
account used to run that process. 
Thus, an attacker, if fortunate, can
manipulate any files belonging to the
compromised account with the gained
access privileges.

The all-powerful system administrator,
root, is the most dangerous of the issues
mentioned so far. Many activities 
are restricted to the root user, from
administrative tasks to simple actions.
Thus most service are originally
launched with root privileges and have
superuser access to the whole system,
without ever actually needing these
extensive privileges. 

What is worse is the fact that many
services need to be run with root
privileges (or to be able to assume root
privileges at any time) to allow them to
change to any user account. The POSIX
capabilities introduced to the Linux

kernel a while back, allow a program
launched by root to drop some
privileges, but this is left up to the
program itself.

Architectural Requirements
The main aim for the developers of
RSBAC was to produce a flexible and
effective access control system as an
add-on for existing Linux mechanisms.
To achieve this goal, the system must
fulfill a number of requirements: 

It must provide the underlying
platform to allow the developer to
program access control models quickly
and simply. This permits a clear
distinction between components that
make decisions, and components that
enforce them. 

The enforcement components act
independently of the components that

Linux security holes typically occur
in Server programs and S bit tools.
The best approach would be to

avoid mistakes and update programs
immediately if a bug occurs. This is not
always possible, the next best thing is to
restrict potential damage, and this is
where access control systems such as
RSBAC come into play [1]. 

If an attacker exploits the security
holes in servers or s bit tools, access to
the system should be restricted to a
minimum. In this case, even a successful
compromise will cause only limited
damage, and protective mechanisms can
be implemented directly in the operating
system kernel.

The standard Linux kernel prevents
access to various resources such as files,
directories or system configurations, but
unfortunately the standard mechanisms
are fraught with weaknesses:
• Poor granularity
• Discretionary access control
• An all-powerful root user
Linux access controls only offer the
standard privileges read, write and
execute; additionally they only allow
distinct privileges to be defined for the
owner of a file, the members of a group
and all others. Restrictions typically do
not apply to the root user. The
granularity of these privileges is thus
insufficient for many tasks.

Linux Privileges – not enough
The owner of a file can do what she
pleases with that file, this is commonly
referred to as DAC, or discretionary
access control. If an attacker has
compromised a process, the attacker’s
activities assume the privileges of the

Integrating multiple security models simultaneously in the kernel and 

detailed logs of any access:The free Rule Set Based Access Control 

(RSBAC) security System offers customized protection for a wide range 

of requirements. BY AMON OTT

Architecture of Rule Set Based Access Control (RSBAC)

Security Architecture

36 February 2003 www.linux-magazine.com

RSBACCOVER STORY

Ronald Raefle ,visipix.com

Amon Ott is a self-employed com-
puter scientist and the author of 
the RSBAC system.
His mainstay is bespoke develop-
ment and Linux firewalls, preferably
with RSBAC. He is also working on 
his doctorate, which he hopes to
complete shortly.

T
H

E
 A

U
T

H
O

R



make decisions. New decision models
can use the underlying infrastructure.

A large number of tried and trusted
security models exist for various tasks,
and combinations of these models
sometimes make sense, depending on
the situation. The underlying frame-
work should thus support multiple
security models simultaneously and in-
dependently, allowing the administrator
to choose the most suitable model for
the current assignment. No matter what
model is in use, activities and any
decisions taken need to be logged, and
the logs must be protected from
attempted manipulation.

The original RSBAC system designed
fulfills nearly all these criteria. Over the
course of the last five years the range of
functions and monitored objects has
increased dramatically, allowing RSBAC
to monitor networks. The main elements
of the original have been tested during
this time and the developers see no
reason to revise them.

Inner Values
We need to explain a few terms, in order
to describe the internal architecture, so
bear with us. From the access control
perspective a subject attempts to invoke
a specific type of access to an object. On
a Linux system, the following occurs: a
process (the subject) attempts to read
(access type) a file (object).

The various object types are cate-
gorized by target type on an RSBAC
system (see Table 1 for an overview).
RSBAC also distinguishes a large number

of access types (request types) that are
applied to the object types. 

Table 2 lists a selection of access types,
some of which are used in our practical
example later. The entire list is available
in the documentation from [1]. The basic
building blocks of the RSBAC systems
are shown in Figure 1. The enforcement
component, or Access Control Enforce-
ment Facility, AEF, mainly comprises
enhancements of existing system
functions. 

These enhancements require the
decision making element, or Access
Control Decision Facility, ADF, to 
reach a decision before any access, and
so possible compromise is permitted. 

If the ADF refuses access, the AEF will
return an “access denied” error to 
the subject. The decision facility and 
the data structures used are mostly
independent of the kernel version. Only
AEF requires one or two changes to
existing kernel functions. This
component was produced by enhancing
existing syscalls.

Components co-operating
Access control involves a number of
steps. The subject (the process) calls a
system function to request access to an
object (1). An extension of this function
(the AEF) reads some system values,
such as the process ID, the type, and 
ID of the target object (2), before calling
the decision facility, ADF; and handing
on the information it has collected and
the type of access (3). The request is
originally addressed to the central

decision facility of the ADF. This
function requests individual decisions
from all active decision modules. The
modules read attributes from data
structures (4) and reach a decision:
permitted, not defined, or denied. 

The central function collates the
individual decisions, and returns a
collective decision (5). The ADF is
restrictive in this respect; if a single
module returns a negative reply, the ADF
will deny access. Actions are only
permitted if all the modules agree that
they should be permitted.

In the case of a negative decision, the
system call is halted and returns an
access error to the process (6). In the
case of positive decisions, the AEF forks
to the system call itself. If the call is
successful, the AEF sends a message to
this effect to the ADF (7). 

The central messaging function of the
ADF is responsible for passing the
message to the appropriate module
functions. The module functions retrieve
the current attributes from the data
structures (8), update them (9) and
confirm that the call has been completed
correctly (10).

If a new object was created by 
the system call, the message from 
the AEF to the ADF will contain the 
type and ID for the new object. The
decision modules then create the
attributes of the object. After confirming,
the system function passes the requested

37www.linux-magazine.com February 2003

COVER STORYRSBAC

Figure 1: A subject’s access to an object is monitored by the Access Enforcement Facility (AEF). The Access
Decision Facility (ADF) decides whether to permit or deny access

Subject

Object

AEF

Data structures

1

Access
request

3 Request decision 7 Notify

5 Answer: Granted or not granted
0 Confirm

4, 8
Access to
data structures

9 Update
2 read
System values

6 If access is denied: error message (and cancel)

q

Access

ADF
RC

AUTH

ACL

System values

Linux Kernel

Name Description
FILE Also includes special device and 

UNIX network files if they are 
handled as files

DIR Directory

FIFO Pipe with name entry in file system

SYMLINK Symbolic link

IPC Inter Process Communication object
on System V basis

SCD System Control Data – global 
system settings and objects such 
as host names or time

USER User object mainly serves the 
purpose of managing attribute 
assignments

PROCESS Process object for receiving signals 
or reading process statuses

NETDEV Network device

NETTEMP Network template

NETOBJ Network object – normally sockets

Table 1: Target Types



a “CREATE” request for the target
directory, creates the file and informs 
the decision facility of the new object.
Otherwise a “TRUNCATE” request is
issued for the file, the open function
truncates the file to zero, and reports the
success of the operation.

After this preparatory work, the syscall
generates a “READ_WRITE_OPEN”
request and opens the file. The ADF
learns that the file has been opened 
and updates the file’s attributes. This
provides the process with a descriptor so
that the process can go on running.

Data Storage Structures
As already mentioned, so-called
attributes, which are assigned to every
user, process, and object are the basis 
for each access decision. Attribute
management is the task of the general
data storage facilities. Additional model
specific data, such as groups or access
matrixes that cannot be organized within
generic structures, also exist. Model

specific structures provide storage
facilities in this case.

The data storage component takes care
of the thankless task of list management,
thus reducing the load on the data
storage components; this involves 
disk storage, SMP locking (for multi-
processor systems), and similar tasks. 
It stores the majority of this data in 
a generic list system that allows any
number of generic one or two-tiered 
list systems (lists of sublists), with
indices and data fields of any size to be
easily registered. 

The decision facilities register their
lists on RSBAC initialization or when
binding a file system. Only a few of the
lists are implemented differently due to
specific conditions.

Persistent Data
If necessary generic lists can provide
persistent data storage, that is the data
stored in the lists will survive a reboot or
deregistration. To achieve this, the

data (11) and control back to the
invoking process.

A Practical Example
A practical example is useful to our
understanding of the theoretical path.
When a process wants to open a file 
for read and write access, it uses
“sys_open()” with appropriate para-
meters. The parameters might specify
that “sys_open()” should create the file if
it does not already exist, or possibly
truncates the file to zero length if the file
exists.

If the ADF rejects one of the following
decisive questions, the system call
terminates and issues an “access denied”
message. The first thing “sys_open()”
needs to do, is to resolve the filename, 
to discover the inode. 

An auxiliary function, whose RSBAC
extension sends a “SEARCH” request to
the ADF for every folder touched, takes
care of this. If the file does not exist, the
extension of the open function generates

38 February 2003 www.linux-magazine.com

RSBACCOVER STORY

Name Object Types Description
BIND NETDEV, NETOBJ Bind network addresses
CLOSE FILE, DIR, FIFO, DEV, IPC, NETOBJ Close a file descriptor
CONNECT NETOBJ Open connection to remote node
CREATE DIR (where), IPC, NETTEMP, NETOBJ Create object
DELETE FILE, DIR, FIFO, IPC, NETTEMP Delete object
EXECUTE FILE Execute file
NET_SHUTDOWN NETOBJ Close connection channel
READ DIR, SYMLINK, IPC, NETTEMP Read from object

(optionally FILE, FIFO, DEV, NETOBJ)
READ_WRITE_OPEN FILE, FIFO, DEV, IPC Open for reading and writing
RECEIVE NETOBJ Receive data from remote node
SEARCH DIR, SYMLINK Name resolution
SEND NETOBJ Send data to remote node
TRUNCATE FILE Change length of file

Table 2: Request Types

Figure 2: Admins can use network templates to assign access privileges to
network address and port ranges. In our example, the ports on all the hosts
in the IP network 192.168.200.0/24 have been selected

Figure 3: The main administration menu provides the RSBAC user with a
straightforward configuration interface, with simple control over all of the
Decision Module functions

Figure 4: RSBAC needs to be enabled in the Linux kernel. A configuration
menu is available for basic settings



“rsbacd” kernel daemon periodically
saves any lists tagged as changed in
special protected directories on the hard
disk, where they are read by the data
storage facility on re-registering the list.
A registration parameter specifies what
partition these files can be stored on to
allow targeted binding of any of the file
system objects.

Modules can optionally supply a
default value when registering a list. 
If a list element goes missing at a later
date, the data storage facility will also
supply this value. For optimization
purposes, any persistent elements con-
taining default values are deleted. 

If a value changes, the data storage
facility reinstates the element. In the
case of two-tiered lists, sublists are
generated or deleted as required. This
procedure keeps the length of the lists to
a minimum and thus reduces the access
times needed.

Every list element is assigned a time
limit when it is created or updated, and
is removed once this period expires. This
characteristic is used by some decision

facilities to generate temporary entries or
privileges. Persistent values are marked
with a value of “0”. Generic lists are
implemented as double linked, sorted
lists that allow you to register both
descriptive and comparative functions
for optimized access. 

If a function of this type has not been
registered, simple “memcmp()” based
memory comparison is used. [2] provides
a more detailed description of the list
management interfaces and parameters.

Rule Templates
Network connections are fairly
ephemeral in most cases; data packets
are often transmitted individually and
independently. That makes it particularly
difficult to assign attributes to them, as
administrative overheads would be
punitive. RSBAC provides network
templates for this task. They describe
multiple network end nodes based on
various criteria, such as the protocol
family, connection type, network
protocol or port number. Figure 2 shows
an example of how they are defined.

RSBAC will not store the attributes
separately for each network end node, or
for each connection, but collectively in a
template. The end nodes of the network
(that is the source or target of data
transmission) inherit their values from
the most suitable template (that is the
template with the lowest descriptor).
This allows the ADF to reach a decision
for “CONNECT” type access by reference
to the template attributes of the source
or target address by simply looking up
the template.

Administration
Templates allow you to specify that a
specific user should only be allowed
access to the local network via the
Internet Protocol TCP, or that a browser
can only access the HTTP proxy port 
on your firewall. There is no need to
configure each individual connection.

As RSBAC stores all of these settings 
in the kernel or in protected files,
administrative tasks mean initiating
system calls or accessing the “/proc” file
system. This allows the kernel to

OUR FASTEST 1U SERVER to date is 

now available for less than £1350. 

Powered by Intel’s flagship 32-bit 

processors, it is available as a dual 

3.0GHz number cruncher. It makes an 

excellent database server or a member 

of a high performance cluster.

At Digital Networks, we specialise in 

servers, storage, workstations, 

desktops and notebooks designed 

specifically for Linux use. Unlike our 

competition, we offer Linux pre-

installed on all our hardware – 

completely free of charge. We offer Red 

Hat, Mandrake and SuSE, plus 

Microsoft Windows as well.

Visit www.dnuk.com and find out why 

corporate customers, small and 

medium businesses and most UK 

universities choose us for their IT 

requirements.

Above specification is an example, and is fully configurable. 1U rackmount servers from 

£864. Prices correct as of 3/12/02. Please check www.dnuk.com for current prices.

�

�

�

�

�

�

�

 1U rackmount chassis

 2x Intel Xeon 2.4GHz processors

 1.0GB registered ECC memory

 80GB hard disk

 1x Intel PRO/1000 Gigabit Ethernet

 1x Intel PRO/100 Ethernet

 Red Hat 7.3 or Red Hat 8.0

£1699 + VAT (prices start at £1326)

1U DUAL INTEL XEON SERVER

Digital Networks

DUAL INTEL XEON 1U
RACKMOUNT SERVER

COVER STORYRSBAC



configuration of most modules, but is a
normal user like everyone else, apart
from that.

A support module called “AUTH” 
was introduced to help out with user ID
management, which is a critical issue.
“AUTH” allows you to define the user
IDs that specific programs and processes
can assume. A process can only assume
an ID that “AUTH” allows it to assume,
any others are prohibited.

A number of RSBAC administration
tools are available. They facilitate many
administrative tasks and provide user
interfaces for the RSBAC system calls.
Menus provide for easier use – see
Figure 3 for an example of the main
“rsbac_menu” menu. RSBAC is probably
the oldest and – judged by its codebase
most extensive – free access control

system for the Linux kernel. Its 
clear and modular structure ensure 
that the authors could keep track 
on development activities. RSBAC 
has become quite popular in Europe
where the system is in widespread use.
Conservative estimates suggest that
RSBAC is in use on several hundred
production systems. ■

designate users who are permitted to
change specific settings. And this is
RSBAC’s solution to the major issue of
the all-powerful root user: If the
configuration files were stored in normal
files, users with write access to 
these files would then automatically
have administrative privileges. RSBAC
allows multiple administrators to have
different privileges.

Self-Control
With only a few exceptions, each
decision module is responsible for its
own attributes. Models with scientific
backgrounds, such as RC and ACL (see
insert “Decision Modules in RSBAC”) in
particular, support the delegation of
administrative tasks to multiple users.
Root still has special rights in the default

40 February 2003 www.linux-magazine.com

RSBACCOVER STORY

Before you can install RSBAC, you first need
to download the sources from the home
page.They comprise three parts: a tar
archive contains modules that are
independent of the kernel version. A version
dependent kernel patch is additionally
required.There is also a tar archive with
administration tools.The RSBAC patch
mainly comprises the initialization calls and
adds system calls for AEF tasks. As an
alternative, you can also download pre-com-
piled kernel sources as a bzip2 tar archive.

The kernels supplied by most distributions
have mostly been through wide ranging
modifications, and this often leads to issues.
In this case, you may have to resort to the
original kernel, available from ftp://ftp.
kernel.org/pub/linux/kernels or a mirror site.

After expanding the tar archive in the main
directory for your kernel sources, and apply-
ing the patches, follow normal procedure to
configure, compile and install the kernel.
The additional “Rule Set Based Access
Control”menu shown in Figure 4 comprises
a number of submenus with a wide range of
options, with help texts for each option.
Default values are OK for most applications.

When you reboot, the “rsbac_auth_enable_
login”kernel parameter allows the login
program to switch to any user ID in order 
to permit users to log on.The “rsbac_
softmode”parameter is useful for initial
tests, as it merely logs decisions without
enforcing them.

After successfully launching the system,
you can go on to expand the support tools
and follow the usual steps,“./configure 
&& make && make install”to compile and
install them. If the RSBAC kernel sources 
are not available in “/usr/src/linux”, you
might like to try the configure parameter 
“--with-kerneldir”.

Installation

[1] RSBAC home page:http://www.rsbac.org

[2] Interface to the generic list system:
http://www.rsbac.org/lists.htm

INFO

The current, stable RSBAC version 1.2.1 comprises the following decision modules and rules, some
of which are used to implement more complex security models.

MAC – Mandatory Access Control, Bell-La Padula.

FC – Functional Control:This simple role model allows access to security information for security
officers only and allows only administrators to access system information.

SIM – Security Information Modification: Only security officers are allowed to modify data tagged
as security information.

PM – Privacy Model: A data protection model devised by Simone Fischer-Hübner to implement
European data protection guidelines.

MS – Malware Scan: Checks files for malevolent software during read and execute access.Version
1.2.1 contains only a scanner prototype, the pre-release version 1.2.2-pre1 uses a professional virus
protection software by F-Prot. Support for additional scanners is planned.

FF – File Flags: Global attributes apply to files and directories,“execute_only”,“no_execute”,
“read_only”,“append_only”, for example.

RC – Role Compatibility:This powerful role model was designed specifically with Linux servers in
mind. It defines roles for users and programs, and types for all kinds of objects. Access privileges
for each type can be specified for every role.The model also allows a schema for a strict delegation
of administrative tasks to multiple roles, and defines time limits for access and administrative
privileges.

AUTH – Authentication Enforcement:This module governs “CHANGE_OWNER”requests 
for processes and thus any “setuid()”calls. Processes and programs can only access user IDs
specifically allowed to them.

ACL – Access Control Lists: An access control list is assigned for each object, to define the
permissible access types for various subjects. Subjects are defined as user IDs, RC roles, and ACL
groups. If an object does not have an entry for a specific subject, it will inherit the rights assigned
to a superordinate object, for example a directory. An inherited rights mask is available to filter
inheritance, allowing any rights assigned to be filtered out for all subjects.The ACL model also
defines superordinate default ACLs, individual group management for every user, and time limits
for any rights and group memberships assigned.

CAP – Linux Capabilities: Allows you to assign minimum and maximum Linux capabilities
(delegated root privileges) to any user and program.Thus server programs can run as normal 
user accounts, or root programs can be executed with restricted privileges.

JAIL – Process Jails:This module introduces a new system call “rsbac_jail()”, which is funda-
mentally an extension of the FreeBSD jail. Programs launched within the jail are captured in 
a chroot environment with restricted administrative and network privileges.

Decision Modules in RSBAC


