
 1

The ‘Rule Set Based Access Control’ (RSBAC) Framework for Linux

Amon Ott
Compuniverse

D-22949 Ammersbek / Germany
Email: ao@compuniverse.de

Simone Fischer-Hübner
Karlstad University

Department of Computer Science
SE-651 66 Karlstad / Sweden

Email: simone.fischer-huebner@kau.se

Abstract:
RSBAC (“Rule Set Based Access Control”) is an open source security extension for Linux
kernels based on the Generalized Framework for Access Control (GFAC). It is a kernel-based
access control scheme, which can be configured with a set of security policies chosen from a
provided set of options and which can be used to significantly enhance Linux system security.
In this paper, we present the RSBAC system architecture, the RSBAC security policy
components and outline the RSBAC implementation. Besides, we briefly compare RSBAC with
other Linux kernel-based access control projects.

Keywords: operating systems security, Linux security, access control models and policies

1. Introduction

1.1 The Problem of Linux Insecurity
Linux systems, as many others in the Unix family, have a well-known lack of access control.
First of all, there is the small granularity of discretionary access rights, only dividing between
read, write and execute rights for file owner, file group members and all others.
The fact that access control relies on a file owner’s discretion already leads to various problems,
like the level of trust that has to be put in a user, the vulnerability from malware working on
behalf of a user, etc. Also, there is hardly any logging of user activities possible, making it even
harder to detect malicious accesses.
The worst problem, however, is the system administrator account ‘root’. Many system tasks are
only allowed to be done by this user, even many network services have to be started or, worse,
run as root. On the other hand, the root account has full access to every object in the system. It is
easy to understand why so many Unix family systems have been compromised locally or by
remote access.1

1.2 RSBAC outline
RSBAC (“Rule Set Based Access Control”) is an open source security extension for current
Linux kernels [RSBAC], [Ott 2001a], [Ott 2001b]. It is based on the Generalized Framework for
Access Control (GFAC) by Abrams, LaPadula et al. ([Abrams et al. 1990], [LaPadula 1995]) and
provides a flexible access control system with several modules implementing different security
policies.

1 Section 7.1 compares RSBAC to the Linux Privileges scheme which has been included into the official Linux
kernel.

 2

GFAC was introduced as a framework for expressing and integrating multiple policy
components. Since in GFAC the access control enforcement facility and access control decision
facility are implemented and thus separated in two different components, GFAC makes it
feasible to configure and extend a system (more precisely: the access control decision facility)
with a combination of security policies chosen from a provided set of options, with confidence
that the resulting system´s security policies will be properly enforced. A draft top- level
specification, which specifies how the GFAC approach can be implemented in Unix System V
was published in [LaPadula 1995]. This draft specification was more elaborated, changed and
extended in many respects and then adapted and used for the implementation of the Rule Set
Based Access Control (RSBAC) in Linux.
The RSBAC system can bring a significantly higher level of security to the Linux kernel and
operating environment.
In this paper, we present the RSBAC system kernel architecture, the RSBAC system components
and outline the RSBAC implementation. Section 2 introduces the overall system architecture as
derived from the GFAC approach. While Sections 3 and 4 explain the ACI data handling and the
interface between enforcement and decision components, section 5 introduces the RSBAC
logging system. The system performance is subject of section 6. Section 7 provides a brief
comparison to other Linux kernel security extensions. Finally, sections 8 and 9 give an outlook
to new development and some final remarks.

2. RSBAC Architecture

According to the GFAC approach, the system’s security kernel consists of an access control
enforcement facility (AEF), an access control decision facility (ADF) and a ACI module which
administrates Access Control Information (ACI, e.g. security attributes). ADF implements the
system’s mandatory security policies and a metapolicy to decide whether processes’ requests
satisfy those security policies. AEF uses the ADF-decisions to enforce the operations of system
call functions.
Also in the RSBAC system, the access control system of the Linux system kernel is divided into
the AEF and ADF components and the ACI-module. All RSBAC framework components are
hard- linked into the Linux kernel. Figure 1 shows the interactions between the system
components. For each security-relevant system call with which a subject requests to access an
object, AEF sends a decision request to ADF. Parameters of the decision request are the request
type, describing the desired type of functionality, the identification of the calling process (the
subject) and possibly some identification values of the target of access (the object).
Targets of an access can be files, directories, named pipes (fifos), symbolic links, devices,
interprocess communication data (ipc), system control data (scd), users, processes or none (see
Table 1). This list includes the extra targets FIFO, SymLink and Device, which had been missing
in LaPadula’s specification in [LaPadula 1995]. Hence, named pipes and symbolic links as well
as direct access to devices had previously not been properly covered by access control.

 3

 Subject process

6. enables 1. requests access
 access or (system call)
 error
 3. request for decisions
 AEF 7. notification ADF
 (Access Enforcement) (Access Decision Control Facility)
 Facility

 open system call function Privacy Policy Rules

 create system call function Bell LaPadula Rules

 5. decision
 other system call functions 9. acknowledgement Rules of other policies

 10. access 2. get system values 4. refer to ACI
 8. update

 Object file, dir, dev, ACI
 scd, ipc, fifo, (Access Control Information)
 user, process

Fig. 1. RSBAC system architecture

ADF evaluates its security policies by using the policy rules for the request type and the ACI
needed for these rules. It then evaluates its metapolicy, which uses the decisions of the different
security policies, to finally decide about the process´ request. As different policies often return
different results, a metapolicy is needed to build the final result. ADF currently has a fixed,
restrictive metapolicy, which denies access, if at least one policy returned NOT_GRANTED.
Later versions might make the metapolicy configurable as well.
AEF then enforces the decision, by either performing the system call functionality or returning
an error to the calling process. In the first case, after successful execution, ADF is notified, so
that the attributes can be set accordingly. Finally, control is returned to the process.
In LaPadula´s GFAC specification security attributes were updated by AEF after AEF received
information through the decision message from ADF about how security attributes had to be set.
In the RSBAC system, however, all policy-dependent functionalities are implemented by ADF
and ACI. AEF is designed as a policy- independent component and hence security attributes are
set by ADF. After successful execution of a system call, ADF is notified by AEF, so that all
decision modules can adjust their attributes accordingly.

 4

Table 1: Targets in RSBAC

FILE Files identified by device and inode numbers (including device special files)
DIR Directories identified by device and inode numbers

FIFO
Named pipes (FIFOs), which reside as special files on the file system, also identified by
device and inode numbers

SYMLINK Symbolic link special files, also identified by device and inode numbers
DEV Devices identified by type (char or block), major and minor numbers

IPC
Inter Process Communication: Semaphores (sem), Messages (msg), Shared Memory
(shm), Sockets (sock), identified by different IDs, e.g. object memory location

SCD
System Control Data: Objects affecting the whole system (e.g., system time and date,
system log, host names). This target type is the only one with a fixed number of objects,
identified by numbers

USER Users as objects, mostly for access control information (ACI), identified by user ID
PROCESS Processes as objects, identified by process ID
NONE No object associated with the request.

3. ACI Module

The ACI component and the ADF are encapsulated into independent modules, which can only be
legally accessed by the use of well-defined functions and are thus protected from unauthorized
accesses. Because of the monolithic Linux kernel structure, this protection could of course still
be violated by direct memory access from within the kernel. Thus all kernel code, especially run-
time loadable kernel modules, must be properly checked before inclusion.
The ACI module is responsible for a reliable administration of security attributes of processes
(process ACI), of users (user ACI) and of all resources that are needed and controlled by the
security policies (object ACI). Besides, it administrates additional access control information
needed for the implementation of specific security policies.
User and file ACI are kept in parallel in main and on secondary storage, so that they can be
easily recovered after each system start. For this purpose, a kernel daemon regularly checks for
updated data and writes it to files in specially protected directories in the file system.
Through the use of the Linux Virtual File System Switch, a file system function virtualization
layer, the storage format of user and file ACI on secondary storage is independent from the used
file system.

An infrastructure for generic persistent lists is also available, which can be used by additional
decision modules. This helps to avoid individual ACI implementations. Existing decision
modules are currently moved to this new scheme.

4. AEF and its Interface to ADF

AEF is implemented by extending all security-relevant system call functions with ADF requests.
For each security-relevant system call, there is at least one ADF-request that relates to its
functionality, but also further requests might be necessary. For example, the open system call has

 5

to be extended with ADF-requests for reading a directory, creating a directory/file, truncating a
file and for opening a file in append, read, write or read-write mode.
Before access to a target is granted to a subject, a request function call to the Access Control
Decision facility (ADF) is performed. Dependent on the type and the target of a request, ADF
decides whether access is granted or denied to a subject. Table 2 lists requests that AEF can send
to ADF, valid target types for the requests as well as Linux system calls that are extended to use
these requests. Valid target types for a request added to a system call are written in brackets
behind the system calls in Table 2. Those system calls that also perform ADF notification are
marked with *. The list of requests in Table 2 is an extension and modification of a list of
requests in [LaPadula 1995].
In addition to the system calls and requests listed in Table 2, some policy specific system calls
and requests were defined.
The logic behind the mapping of system calls to ADF requests should be obvious in most cases.
Nevertheless, some of the mapping decisions are now justified.

Some requests only take place under certain conditions or with certain system call parameters,
e.g. the EXECUTE request in sys_mmap is only issued, if a file is to be mapped in EXEC mode.
This special mode, which is often used for libraries, is not covered by the preceding intercepted
read-open.

Table 2: List of Requests from AEF to ADF

Request Description
Valid Target
Types

Linux system calls
(valid target types in brackets)

ADD_TO_KERNEL Add a kernel module NONE create_module(NONE), init_module(NONE)

ALTER
Change IPC control
information IPC

msgctl(IPC), shmctl(IPC),

APPEND_OPEN Open to append
FILE, DEV,
IPC

open(FILE,DEV)*, msgsnd(IPC)*,
sendto(IPC)*, sendmsg(IPC)*

CHANGE_GROUP Change active group
IPC,
PROCESS,
NONE

setgid(PROC), setregid(PROC),
setresgid(PROC), setgroups(PROC),
setfsgid(NONE) (for DAC only),
shmctl(IPC), msgctl(IPC)

CHANGE_OWNER Change owner

FILE, DIR,
IPC,
PROCESS,
NONE

chown(FILE, DIR, FIFO, SYMLINK),
lchown(FILE, DIR, FIFO, SYMLINK),
fchown(FILE, DIR, FIFO, SYMLINK),
setuid(PROC)*, setreuid(PROC)*,
setresuid(PROC)*, setfsuid(NONE) (for DAC
only), shmctl(IPC), msgctl(IPC)

CHDIR
Change working
directory DIR

chdir(DIR), fchdir(DIR), chroot(DIR)

CLONE Fork/clone a process PROCESS fork(PROC)*, vfork(PROC)*, clone(PROC)*

CLOSE
Close opened file
etc. Should always
be granted.

FILE, DIR,
FIFO, DEV,
IPC

close(FILE, DIR, FIFO, DEV, IPC),
shmdt(IPC)*, msgrcv(IPC)*, msgsnd(IPC)*,
send(IPC)*, sendto(IPC)*, sendmsg(IPC)*,
recv(IPC)*, recvfrom(IPC)*, recvmsg(IPC)*

 6

CREATE Create object
DIR (where),
IPC

creat(DIR, IPC)*, open(DIR, IPC)*,
mknod(DIR)*, mkdir(DIR)*, symlink(DIR)*,
shmget(IPC)*, msgget(IPC)*, socket(IPC)*,
accept(IPC)*

DELETE Delete object
FILE, DIR,
IPC

unlink(FILE, DIR, FIFO, SYMLINK)*,
rmdir(DIR)*, msgctl(IPC)*, shmctl(IPC)*,
shutdown(IPC)*. close(IPC)*

EXECUTE
Execute file or mmap
in EXEC mode

FILE, NONE
(mprotect
only)

exec(FILE)*, mmap(FILE) (EXEC mode),
mprotect(FILE, NONE) (EXEC mode)

GET_PERMISSIONS_DATA
Read Unix
permissions (mode)

FILE, DIR,
FIFO

access(FILE, DIR, FIFO, SYMLINK)

GET_STATUS_DATA Get status (stat() etc.)
FILE, DIR,
FIFO, IPC,
SCD

open_port(SCD) (/dev/kmem etc.),
open_kcore(SCD) (/proc/kcore), stat(FILE,
DIR, FIFO, SYMLINK, IPC), newstat(FILE,
DIR, FIFO, SYMLINK, IPC), lstat(FILE,
DIR, FIFO, SYMLINK, IPC), newlstat(FILE,
DIR, FIFO, SYMLINK, IPC), fstat(FILE,
DIR, FIFO, IPC), newfstat(FILE, DIR, FIFO,
SYMLINK, IPC), stat64(FILE, DIR, FIFO,
SYMLINK, IPC), lstat64(FILE, DIR, FIFO,
SYMLINK, IPC), fstat64(FILE, DIR, FIFO,
SYMLINK, IPC), statfs(FILE, DIR, FIFO,
SYMLINK), fstatfs(FILE, DIR, FIFO,
SYMLINK), rsbac_stats(SCD),
rsbac_check(SCD) , rsbac_stats_pm(SCD),
rsbac_stats_rc(SCD), rsbac_stats_acl(SCD),
rsbac_log(SCD)

LINK_HARD Hard link
FILE, DIR,
FIFO

link(FILE, DIR, FIFO, SYMLINK)

MODIFY_ACCESS_DATA
Change access
information, e.g.
time, date

FILE, DIR,
FIFO

utimes(FILE, DIR, FIFO, SYMLINK)

MODIFY_ATTRIBUTE
Change an RSBAC
attribute value

All target
types

(specific request needed for various security
models)

MODIFY_PERMISSIONS
_DATA

Change Unix
permissions

FILE, DIR,
FIFO, SCD

ioperm(SCD), iopl(SCD), chmod(FILE, DIR,
FIFO, SYMLINK) , fchmod(FILE, DIR,
FIFO, SYMLINK)

MODIFY_SYSTEM_DATA
Change system
settings SCD

stime(SCD), settimeofday(SCD),
adjtimex(SCD), sethostname(SCD),
setdomainname(SCD), setrlimit(SCD),
syslog(SCD), sysctl(SCD), swapon(SCD),
swapoff(SCD), rsbac_log(SCD)

MOUNT Mount a filesystem DIR, DEV
mount(DIR, DEV) (separate mount
notification for data structures)

READ Read from object
FILE, DIR,
FIFO, DEV,
IPC

read(FILE, FIFO, DEV, IPC)*, readv(FILE,
FIFO, DEV, IPC)*, pread(FILE, DEV, IPC)*,
readdir(DIR), open(DIR)

READ_ATTRIBUTE
Read RSBAC
attribute value

All target
types

(specific request needed for various security
models)

 7

READ_OPEN Open for read
FILE, FIFO,
DEV, IPC

open(FILE, FIFO, DEV, IPC)*, shmat(IPC)*,
msgrcv(IPC)*, recv(IPC)*, recvfrom(IPC)*,
recvmsg(IPC)*

READ_WRITE_OPEN
Open for read and
write

FILE, FIFO,
DEV, IPC

open(FILE, FIFO, DEV, IPC)*, shmat(IPC)*,
bind(IPC)*, connect(IPC)*, listen(IPC)*

REMOVE_FROM_KERNEL
Remove kernel
module NONE

delete_module(NONE)

RENAME Rename
FILE, DIR,
FIFO

rename(FILE, DIR, FIFO, SYMLINK)
(RSBAC identification not changed!)

SEARCH

Lookup in DIR from
inside kernel for
access with full path,
used by many
syscalls, follow
SYMLINK

DIR,
SYMLINK

(internal functions lookup_dentry(DIR) /
path_walk(DIR) / lookup_hash(DIR) /
follow_link(SYMLINK))

SEND_SIGNAL
Send a signal,
including KILL

PROCESS
kill(PROC)

SHUTDOWN
Shutdown/reboot
system NONE

reboot(NONE)

SWITCH_LOG
Change RSBAC log
settings NONE

rsbac_adf_log_switch(NONE)

SWITCH_MODULE
Switch decision
module on/off

NONE
rsbac_switch(NONE)

TERMINATE

End of calling
process, for ACI
cleanup. Should
always be granted.

PROCESS

exit(PROC)

TRACE Trace a process PROCESS ptrace(PROC) (architecture dependent)

TRUNCATE Truncate FILE
open(FILE)*, truncate(FILE)*,
ftruncate(FILE)*, truncate64(FILE)*,
ftruncate64(FILE)*

UMOUNT Umount a filesystem DIR, DEV
umount(DIR, DEV) (separate umount
notification for data structures)

WRITE
Write to object. DIR
is used for object
moving to target dir.

FILE, DIR,
FIFO, DEV,
IPC, SCD

write(FILE, FIFO, IPC, DEV)*, writev(FILE,
FIFO, IPC, DEV)*, pwrite(FILE, IPC,
DEV)*, rename(DIR), rsbac_write(SCD)

WRITE_OPEN Open for write
FILE, FIFO,
DEV, IPC

open(FILE, FIFO, DEV, IPC)*

A distinction is made between read and read-open and between write and write-open. Read-open
(write-open) enables the process to read (write) the object, whereas read (write) actually
transfers data from (to) the open object into (from) the memory space of the process. ADF´s
security policies for controlling read (write) access can be applied at the read-open (write-open)
as well as (optionally) at the read (write).
Leaving out the check of the read (write) access itself reduces the access control overhead
significantly, because the number of necessary checks is much reduced. On the other hand,
changes in the ACI can then only be enforced at the next open request.
No operations of the ipc mechanisms for message queues and shared memory are, however,
equivalent to the file open and close system calls. The msgget and shmget system calls are

 8

similar to the creat and open system call, because they return a kernel-chosen descriptor for use
in other system calls. Nevertheless, even if a process never did a "get" call, it can access an ipc
message mechanism if it guesses the correct ID and if access permissions are suitable.
For consistency with accesses to other object types, the msgsnd system call is extended with an
append-open and a close ADF-request, although msgsnd is actually more analogous to the actual
write operation. Similarly, msgrcv system call is extended with a read-open and a close ADF
request.
Also, socket system calls do not strictly follow the traditional Unix open-read-write-close
paradigm. The connect system call, which binds a permanent destination to a socket, and the
listen system call correspond to the open system call. However, sockets used with connectionless
datagram services need not be connected before they are used, if a destination is specified for
each data transfer. Thus, for consistency the system calls sendto and sendmsg, which both allow
the caller to send a message through an unconnected socket, are extended with append-open and
close ADF-requests. Similarly, the system calls recvfrom and recvmsg are extended with read-
open and close ADF-requests.
The shmat and shmdt system calls for attaching and detaching of shared memory to the virtual
address space of a process are in a way analogous to the file open and close system calls. The
shmat system call has to be called before a process can access shared memory, much as the open
system call has to be executed before a process has access to a file. After attaching a shared
memory, it becomes part of the virtual address space of the process and can be accessed.
However, in contrast to the open system call for files, after the shmat system call, no system calls
are needed to access data in shared memory, which are accessible in the same way as other
virtual addresses are.

5. Security Policies in ADF

The different security policy modules that have been implemented as part of ADF are listed in
Table 3. A RSBAC system can be configured with any combinations of these policy
components.
In addition to the policy of the traditional Bell LaPadula model, the SIM policy and the FC
policy, further security model policies that were developed by the authors have been
implemented in the RSBAC system. In the next subsections, some of those policies are
described in more detail.

Table 3: Security Policies included in the RSBAC implementation

Policy Module Name: Implemented Security Policy:

MAC Mandatory Access Control Policy of the Bell LaPadula Model [Bell LaPadula
1973]

FC Functional Control Policy (see [Abrams et al. 1991], [LaPadula 1995]). A simple
role based model that can be used to restrict access to security information to
security officers and access to system information to administrators.

 9

SIM Security Information Modification Policy (see [Abrams et al. 1991], [LaPadula
1995]). Only security administrators are allowed to modify data labeled as
security information

PM Simone Fischer-Hübner's Privacy Model policy (see below)

MS Malware Scanner policy (see below).

FF File Flags Policy. The FF policy can be used to set the following access flags for
directories and files: execute_only (files), read_only (files and directories),
search_only (directories), secure_delete (files), no_execute (files) and
add_inherited (files and directories). The flags are checked at every access. Only
security officers may modify these flags. If the add_inherited flag is set, the
parent directory´s flags are added to the target's own flags. (Example: If
no_execute is set on the directory /home, all executables below that directory
inherit this flag. Thus no user can execute files from her home directory, unless
the flag is removed).

RC Amon Ott´s Role Compatibility Model policy (see below).

AUTH Authorization enforcement policy (see below).

ACL Access Control List policy (see below).

Privacy Policy :
The privacy policy module is enforcing the security policy of a formal task-based privacy model
which was introduced in [Fischer-Hübner 1994], [Fischer-Hübner/Ott 1998], [Fischer-Hübner
2001]. The privacy model was designed to protect personal data and can be used to enforce legal
privacy requirements such as necessity of personal data collection and processing and purpose
binding.
The basic idea of the privacy policy is that subjects (processes) can only access personal data
objects by performing a task (e.g., diagnosing, patient admission) that serves a specific purpose.
Each personal data object is classified by a class (e.g., medical diagnosis data or accounting
data), which has specified purposes for which objects of that class are obtained. The privacy
policy can be informally stated as follows:

A process may have access to personal data, if this access is necessary to perform its current
task and only, if the user owning the process is authorized to perform this task. The process may
only access data in a controlled manner by performing a (well-formed and certified)
transformation procedure, for which the process´ current task must be authorized. Besides, the
purpose of its current task must correspond to the purposes for which the personal data of this
class are obtained or there has to be consent by the data subjects that their personal data may be
used for the purpose of the current task.

Note that other known security models (such as the RBAC, the Bell LaPadula model or the Clark
Wilson model) are not in all respects adequate to protect personal data. In particular the privacy
principle of purpose binding cannot be adequately enforced by other models, which are not
modeling purposes and consents of data subjects [Fischer-Hübner 2001].

 10

CASE read-open, execute
 SELECT CASE target[input-argument]
 CASE file

IF type(process) is MS-trusted
THEN
 return(YES)

 SELECT CASE MS-scan-result(object)
 CASE unscanned

IF SCAN(object) is infected
 THEN

return(set-attribute (MS-scan-result(object), rejected); NO)
 ELSE

return(set-attribute (scan-result(object),
version-number(scanner));YES)

 CASE scanned
 IF version-number(scanner) > version-number(object)
 THEN

[IF SCAN(object) is infected
 THEN

return(set-attribute (scan-result(object), infected); NO)
 ELSE

return(set-attribute (scan-result(object), version-
number(scanner)); YES)]

 ELSE
 return(YES)
 CASE rejected
 return(NO)

 CASE ELSE
 return(UNDEFINED)
 CASE ELSE
 return(UNDEFINED);

A complete privacy model description and specification of ACI and ADF-rules needed for
implementing the privacy policy are given in [Fischer-Hübner/Ott 1998], [Fischer-Hübner 2001].

Malware-Scanner Policy:
The Malware Scanner (MS) Policy can protect the system against malware (viruses, malicious
applets, etc.) infections by preventing the execution, reading and transmission of malicious code
(see also [Ott/Fischer-Hübner/Swimmer 1998]). It is enforced by on-access scanner policy rules
that are invoked on EXECUTE- and open-ADF requests and can detect and stop the spread of
malware. The malware scanner policy is similar to the methodology incorporated in many
Antivirus products, except that it is implemented in the kernel and is therefore much better
protected from manipulations. Besides, it contains socket- level scanner policy rules that are
invoked on READ-requests to network sockets and can stop the transmission of malware into the
system by a network connection.

To enforce the on-access-scanner policy rules, the following security attributes grouped into
process-ACI and object-ACI are needed and administrated by the ACI-Module.

Fig. 2. ADF-On-Access Scanner Policy Rule for read-open and execute requests

For each file, the security attribute MS-scan-result is used, which can have “scanned”, “rejected”
or “unscanned” as possible values. It has the value ”scanned”, if the file was scanned and no
infection was found. In this case, the file has also a version-number as a security attribute that
corresponds to the version number of the used malware scanner. If the file was scanned and a

 11

malware infection was detected, the file attribute is set to “rejected”. It is set to “unscanned,” if
the file has not been scanned so far, or if the file has been modified by the last access to it.
Besides, a new attribute MS-trusted is used, which is set for the antivirus or backup programs
and processes that are executing those programs. The ACI-module also administrates a database
of virus patterns/signatures of a malware scanner, which has a version number attached to it.

The scanner policy rules are invoked at execute or open decision requests sent to ADF by AEF.
Infections by file viruses are caused by the execution of infected files, whereas reading an
infected document causes infections by macro viruses. Thus, each request from AEF to ADF to
execute or to read a file should only be positively decided by ADF, if the file has first been
scanned with the latest scanner version and if no infections were found or if the process is MS-
trusted

Figure 2 specifies the ADF-On-Access Scanner Policy Rule that is invoked at READ-OPEN or
EXECUTE requests. The specification language used should be intuitively understandable to
computer scientists, but is also explained in [LaPadula 1995]. SCAN is the scanner function that
scans an object and returns a scan result.
For the modifying access request types WRITE-OPEN, APPEND-OPEN and TRUNCATE, no
decision rules are defined. However, for these and for READ-WRITE-OPEN, the MS-scan-
attribute value is reset to “unscanned”, because the file might have been infected or disinfected.

The on-access scanner policy provides a reliable and tamper-proof protection against known
malware in executable files. Increasingly however, malware is brought into the system by a
network connection, often executed without ever being saved to a file. Therefore, we extended
our approach to include scanning and denying access to data that seems to contain malicious
code from a given origin of network connections by controlling UNIX-type sockets (see
[Ott/Fischer-Hübner/Swimmer 1998]).
Additional socket-level scanner policy rules control all read accesses to network connection
sockets. The rules are invoked by requests sent to ADF for the access type READ and target IPC,
which were added to the TCP and UDP read functions. If malware is detected in the data stream,
further read access is denied and a new error code "malware-detected" is returned. Depending on
the configuration, the connection can be closed by the kernel, or a trusted process can still allow
the transmission of the whole data stream.

Role Compatibility (RC) Policy:
The Role-Compatibility Model policy can be used to define roles as a set of access permissions
to compatible object types, and is most useful for secure system administration. It is similar to
the Domain and Type Enforcement (DTE) approach [Badger et al. 1995].
In the RC model, objects of the target type FILE, DIR, DEV, IPC, SCD, PROCESS can be
categorized according to object types. The set of access modes corresponds to the set of request
types listed in Table 2. Roles are defined as sets of access permissions to objects of certain types
in certain access modes. Each process is currently performing one role. The initial role of a
process is determined by a default role that is defined for its owner.
One essential rule of the security policy can be stated as follows:

 12

A process can only access an object in a certain access mode if its current role is authorized to
access objects of that type in that mode (we say that the role has to be "compatible" to the object
type and access mode).

It is also possible to change the current role of a process if the current role is “compatible” with
the new role or if the “forced role” mechanism is used.
For a role R, a set of so-called compatible roles can be defined, to which a process performing
role R is authorized to switch. Once the role has been changed, there is only a way back to the
first role, if the new role is in turn compatible with the first role. This mechanism allows a
process to temporarily work with different privileges.
A forced role is an attribute of an executable stating which role a process gets when running this
executable. Forced roles can forbid processes to access data arbitrarily, and allows them to
access data only in a constrained way by performing certain well-defined programs. The forced
role concept can for instance be used to restrict the privileges of the root account in a Unix
system, e.g. to restrict access to authorisation information (/etc/passwd, /etc/shadow) to certain
programs with a forced role “Authorisation”. Forced roles are also very useful for CGI programs
of tightly controlled Web servers.

Access Control List (ACL) Policy:
Because of good experiences with and wide knowledge of the access control list scheme of a
popular PC network system, this scheme as been adapted for RSBAC implementation. However,
some important changes have been made to overcome known disadvantages (e.g. the
omnipotent Supervisor) and to provide some interconnection with the Role Compatibility policy.
The Access Control List policy uses an access control list (ACL) for every object of the target
types FILE, DIR, DEV and SCD. If there is no ACL entry for a subject – object pair, the ACL
entry of the object parent is inherited. Inheritance is terminated by a default ACL, which is
defined for every target type, including USER, PROCESS, IPC.
Every user can define groups of users for access control. A user that defines a user group
becomes the owner of that group. All group settings like name or memberships can only be
modified by the group owner. If a group is marked as global, its settings can be read and it can be
used/set as a subject in access control lists by all users, while the settings of a private group can
only be read by the group owner and only the owner can set ACL entries with its private group
as a subject .

An ACL entry consists of a pair (Subject, Access Modes). Subjects can be users, RC policy roles
or ACL groups. Access Modes is a subset of the set of all request types (so called “normal
rights”, see table 2) and all so called ACL special rights.
ACL special rights are Forward (set normal rights this user has for others), Access Control (set
any normal right for anyone) and Supervisor (contains all rights, can set special rights for
anyone).
A process has the right to access an object in a certain mode, if the object´s ACL has an entry
with either the user owning the process, one of the user´s groups or the process´ RC role as the
first entry component and the access mode as the second component.
An object can be protected against inheritance of rights given from a higher hierarchy level by its
inheritance mask. This mask defines, which rights may be inherited. Its default value is of course

 13

the whole set of rights. As this has always been a popular way of locking yourself out, the
Supervisor right can only be masked out under special circumstances.

Authorization Policy:
Linux, like many other Unix like systems, has well known deficiencies at user authorization. In
fact, every process running as root is allowed to set its owner to any possible user ID. This makes
the enforcement of security with access control based on user IDs almost impossible. The
Authorization policy was developed to protect against this vulnerability.
The basic idea is simple: No process is allowed to set its owner to another user ID, unless it has
been explicitly granted this right called capability. In this authorization policy model, a
capability is defined as a range of user IDs (first, last) to which a process running a certain
program has the right to change. The capability for all user IDs can also be set by an extra switch
‘auth_may_setuid’. Capability sets are defined for executables and inherited by every process
running them.
Capabilities may be set by users with system role ‘Security Officer’. Capabilities for processes
may also be set by other processes with the extra switch ‘auth_may_set_cap’ turned on. The
latter feature can be used to implement authentication daemons, which grant a capability to a
process only after proper authentication.
As this model is so important for all other models, MODIFY_ATTRIBUTE decision requests
with special SCD targets ‘add_file_cap’ etc. are enforced whenever a process tries to add or
delete a capability. This way, each model can perform its own access control for all capability
modifications.

6. The RSBAC logging facility

A facility for extensive and model independent logging has been implemented. It is possible to
specify the event to be logged in dependence of the request type, user, executable and target file,
fifo, symlink, directory or device objects. All log settings are at the granularity of request types.
Logged items are the request, process ID, program name, real or pseudonymous user ID, target
type, target ID, attribute type, attribute value, ADF decision and the names of the modules that
made this decision.
General settings for request types can determine whether to log none, denied requests only or all
requests of that type. Object based settings have the additional default value ‘request based’,
which means that the request setting should be used.
The user and the executable based logging can only be turned on or off for a specific request. If it
is turned off, logging might still be triggered by the object log settings.
All accesses to log settings are controlled. Each model can implement its own access control
scheme for logging administration.

 14

7. System Performance

Some benchmarks have been run on a SuSE Linux 7.0 pentium class system with kernel 2.2.18
and with RSBAC version 1.1.0. Three benchmark runs per kernel type, in single user mode right
after boot, were performed under a clean kernel, a kernel with RSBAC framework, but without
decision modules, and an RSBAC kernel with modules FF, AUTH, RC and ACL.

Each benchmark run consisted of a full compile of the same set of kernel sources.Kernel compile
benchmark are widely used, because they combine a lot of file accesses with significant memory
pressure and a high system load. The following average times were produced:2

Kernel type Total time Kernel + User Kernel time User/Process time
Clean kernel 1858s 1857s 69s 1788s
RSBAC without modules 1884s

(+1.3%)
1877s (+1.1%) 82s (+18.8%) 1795s (+0.4%)

RSBAC with FF, AUTH, RC,
ACL modules

1967s
(+5.9%)

1959s (+5.5%) 167s (+142%) 1792s (+0.2%)

Based on these numbers and practical experience, we regard the RSBAC overhead as small for
real systems.

Although enhanced access control is mostly important on big multi-user server systems, the
additional memory usage is still relevant. To reduce the memory burden, many RSBAC features
and all decision modules can be left out at kernel configuration and compilation.
Also, attribute data objects are only allocated on demand, and those containing only default
values or relating to deleted objects are automatically removed.

Additional RSBAC code and static data increase the uncompress kernel size by approximately
130 to 600 KB, plus the memory consumed for attribute objects.

8. Other Linux security extensions

8.1 Linux Privileges
Recent Linux kernels additionally implement a privilege scheme, which splits the root user’s
special rights into a set of single rights, called capabilities (see [Linux-Privs 2000]). These rights
are given to a process based on the parent process and the executable that is run.
However, while these capabilities can distinguish between some access types, they are mostly
ignorant of the object that is to be accessed, e.g. CAP_DAC_OVERRIDE gives full read and
write access to all files and devices on the system. As a result, many administration tasks still
have to be done with too many access rights. Another disadvantage is the fixed access control
model, which cannot easily be changed or replaced.

2 Times measured via time(1) utility.

 15

8.2 Flask / NSA Security Enhanced Linux (SELinux)
Security-Enhanced Linux (SELinux), which is currently developed by NSA, is a Linux version
that is in a similar way as RSBAC also incorporating a flexible mandatory access control in its
kernel. In a previous research project, the Flask Security architecture providing policy flexibility
[Spencer at al. 1999] was developed and prototyped in the Mach and Fluke research operating
systems. Like the RSBAC system architecture, the Flask architecture is also separating the
enforcement mechanism from the policy decision mechanism and is consistent with GFAC. It
includes a security policy server to make access control decisions and object managers to enforce
access control decisions. In the SELinux project, the NSA is integrating the Flask security
mechanisms into the Linux kernel and is now working with the NAI Labs in further developing
and configuring the security-enhanced Linux system. The Linux prototype implementation of the
Flask security server implements a policy that is a combination of Type Enforcement, role-based
access control (RBAC), and optionally multi- level security. The SELinux prototype is so far only
controlling operations on processes, files, directories and sockets. For the protection of System V
IPC objects, there is a preliminary design concept.
While RSBAC is a complete system that runs on different platforms and has already been used
for the last year in several security-relevant applications, SELinux is so far a prototype which is
still under major development. So far, SELinux only supports the x86 architecture and has only
been tested on Red Hat distributions. Besides, in contrast to RSBAC, it does not offer a set with
a wide variety of different security policies to which new policy components can be easily added
and from which an arbitrary subset can be chosen for system configuration. Although Type
Enforcement in combination with RBAC is powerful and capable to enforce a wide range of
policies, there are a number of security policies implemented in RSBAC that cannot or at least
cannot easily be expressed with Type Enforcement and RBAC.

8.3 Medusa
The Medusa DS9 security system is another security extension for Linux kernels [Medusa]. It
consists of a patch to the Linux kernel and a user space daemon that acts as an authorization
server that is invoked by the kernel to authorize operations. The authorization server is
implemented as an interpreter of its own configuration language and is thus capable to
implement different security models. While the user space implementation of the authorization
server allows to easier port Medusa to new Linux kernel versions, it is less secure than a kernel-
based solution.

8.4 Linux Intrusion Detection System (LIDS)
Linux Intrusion Detection System (LIDS) [LIDS], which has been developed by a Chinese and a
French student, is a patch that enhances the Linux kernel’s security by implementing a reference
monitor with mandatory access control. In addition, it includes a network port scanner detector
and a response mechanism that allows to log and to act upon security violations by shutting
down a user’s session. However, in contrast to RSBAC, LIDS offers only a static access control
policy and thus less flexibility.

 16

9. Outlook

At the moment, the network access control is completely redesigned. There will be network
target templates, the attributes of which are inherited for every network connection instance.
The templates will contain fields like source address range, target address range, interfaces (to
protect against spoofing attacks), Protocols, source ports, target ports and some more.
The templates as well as the connection instances will be treated as normal access objects with a
full range of requests, like CREATE, CONNECT, LISTEN, etc. This way, each decision policy
can perform full control of all network accesses by all processes.

As an example, think of a local network with well controlled systems. A connection template
could contain the following settings and attributes:
- Source Address Range: (interface address for internal net)
- Target Address Range: (local network)
- Interfaces: (local network interface)
- Protocols: All
- Source Ports: 0-65535 (all)
- Target Ports: 0-65535 (all)
- MAC Security Level: Secret
- RC Network Object Type: 4 (Internal Net)

All other addresses at the outer interface of a firewall could have the following template:
- Source Address Range: (External Network address)
- Target Address Range: (All)
- Interfaces: (external network interface)
- Protocols: All
- Source Ports: 0-65535 (all)
- Target Ports: 0-65535 (all)
- MAC Security Level: untrusted
- RC Network Object Type: 0 (untrusted)

There is also work in progress to get a generic access control interface into the official Linux
kernel, which would greatly reduce development work.

10. Final Remarks

Linux systems are increasingly used in mission critical environments where a lack of security
can be very risky for a company. Hence, access control under Linux will most likely gain more
and more relevance and interest in future. In comparison to other kernel-based access control
systems for Linux, RSBAC has the advantage that it offers a wide range of security policies and
that it easily allows to define and add additiona l policy modules for almost any new security
policy.
The development of RSBAC will be continued. It is used in more and more server systems, and
there are currently 30-100 downloads of the latest release per week, with a clear peak after the

 17

announcement of a new version. Also, there is a mailing list for discussion and announcements
with more than 90 participants.
The single processor versions as well as the latest version for Symmetric Multiprocessing (SMP)
kernels have shown to be very stable and have been used in production environment for at least
one year.3 Benchmark tests and practical experience has also shown that performance impacts
are small, unless a lot of logging has to be done.

References

[Abrams et al. 1990] M.Abrams, K.Eggers, L.LaPadula, I.Olson, ”A Generalized Framework
for Access Control: An Informal Description”, Proceedings of the 13th National Computer
Security Conference, Washington, October 1990.

[Abrams et al. 1991] M.Abrams, L.LaPadula, M.Lazear, I.Olson, “Reconciling a Formal Model
and Prototype Implementation – Lessons Learned in Implementing the ORGCON Policy”,
Mitre Corporation, Bedford, Mass.01730, November 1991.

[Bell LaPadula 1973] D.E.Bell, L.LaPadula, “Secure Computer Systems: A Mathematical
Model”, Mitre Corporation, Bedford, Mass.01730, January 1973.

[Fischer-Hübner 1994] S.Fischer"Towards a Privacy-Friendly Design and Use of IT-Security
Mechanisms", Proceedings of the 17th National Computer Security Conference, Baltimore
MD, October 1994.

[Fischer-1998a] A.Ott, "From a Formal Privacy Model to its Implementation", Proceedings of
the 21st National Information Systems Security Conference, Arlington, VA, October 5-8,
1998, http://www.rsbac.org/niss98.htm.

[Ott/Fischer-Hübner/Swimmer 1998b] A.Ott, Fischer-"Approaches to Integrated Malware
Detection and Avoidance", Proceedings of the 3rd Nordic Workshop on Secure IT Systems,
Trondheim, November 5-6, 1998, http://www.rsbac.org/nordse98.htm.

[Fischer-Hübner 2001] "IT Security and Privacy - Design and Use of Privacy-Enhancing
Security Mechanisms", Springer Scientific Publishers, Lecture Notes of Computer Science,
LNCS 1958, May 2001.

[LaPadula 1995] L.LaPadula, “Rule-Set Modeling of Trusted Computer System”, Essay 9 in:
M.Abrams, S.Jajodia, H. Podell, “Information Security - An integrated Collection of Essays”,
IEEE Computer Society Press, 1995.

[LIDS] Linux Intrusion Detection System (LIDS), http://www.lids.org/

[Linux-Privs 2000] Linux Privileges, http://www.kernel.org/pub/linux/security/linux-privs/

[Loscocco et al. 2001] P.Loscocco, S.Smalley, “Integrating Flexible Support for Security
Policies into the Linux Operating System”, Proceedings of the FREENIX Track of the 2001
USENIX Annual Technical Conference, http://www.nsa.gov/selinux/

3 E.g. in Compuniverse file server and several customer firewalls. For security reasons, references can only be given
on personal request.

 18

[Medusa] Medusa DS9 security system, http://medusa.formax.sk

[Ott 2001a] Amon Ott: "Rule Set Based Access Control (RSBAC), Snow Unix Event / unix.nl
congress "Reliable Internet", Waardenburg, 14th of September 2001,
http://www.rsbac.org/unix-nl/

[Ott 2001b]Amon Ott: "The Rule Set Based Access Control (RSBAC) Linux Kernel Security
Extension , 8th International Linux Kongress, Enschede, 28th to 30th of November 2001,
http://www.rsbac.org/linux-kongress/index.html

[RSBAC] Rule Set Based Access Control in Linux, http://www.rsbac.org.

[Spencer et al. 1999] R.Spencer, S.Smalley, P.Loscocco, M.Hibler, D.Andersen, J.Lepreau,
“The Flask Security Architecture: System Support for Diverse Security Policies”, Proceedings
of the 8th USENIX Security Symposium, Washington, D.C., August 23-26, 1999.

