
Rule Set Based Access Control (RSBAC)

Linux Kernel Security Extension

Short Overview for OpenWeekend 2002 in Prague

Amon Ott <ao@rsbac.org>

 Contents:

 1 Introduction
 1.1 History
 1.2 Motivation
 1.3 Design Goals
 1.4 Overview of RSBAC

 2 Architecture and Implementation of the Framework
 2.1 Subjects, Objects and Requests
 2.2 List of Requests with Targets
 2.3 Architectural Diagram
 2.4 Module Registration (REG)

 Contents II:

 3 Implemented Models
 3.1 MAC, FC and SIM
 3.2 PM, MS and FF
 3.3 AUTH
 3.4 RC
 3.5 ACL
 3.6 CAP

 4 Practical Experience
 4.1 Running Systems
 4.2 Stability
 4.3 Performance

 Contents IV:

 5 Online Ressources

 6 New in 1.2.0

 1 Introduction

 1.1 History

 1.2 Motivation
 1.3 Design Goals

 1.4 Overview of RSBAC

 1.1 Introduction: History

 RSBAC Project started as Master Thesis in November

1996

 First public RSBAC version 0.9 for Linux kernel 2.0.30

on January, 9, 1998

 Current stable release 1.2.0 for kernels 2.2.20 and
2.4.18

 1.2.0 with many changes against 1.1.2

 1.2+3 Introduction: Motivation and
Goals

 Classic Linux/Unix Access Control is insecure
 Small Granularity
 Discrete Control
 Trusted user?
 Malware: Invitation to Trojans and Viruses

 Superuser root
 Full Access
 Too often needed
 Too many exploits (root kits, kernel module attacks etc.)

 Better models for other protection goals

 Flexible Model selection and combination

 Good portability

 1.4 Introduction: Overview

 Based on GFAC by Abrams and LaPadula

 Open Source with GPL

 Flexible structure
 Separation between enforcement (AEF), decision (ADF) and access

control information (ACI)
 Only AEF and part of ACI system dependent
 Almost any type of model supportable
 Model independent -> meta policy
 Runtime Module Registration (REG)

 1.4 Introduction: Overview II

 Powerful logging system
 Request and decision based
 User based
 Program based
 Object based

 Stable production use since March 2000

 Support for current Linux kernels, ports to other

systems likely

 Two Linux distributions with RSBAC: ALTLinux Castle
and Kaladix

 2 Architecture and Implementation of
the Framework

 2.1 Subjects, Objects and Requests

 2.2 List of Requests with Targets

 2.3 Architectural Diagram

 2.4 Module Registration (REG)

 2.1 Architecture: Subjects, Objects and
Requests

 Subjects:
 Processes acting on behalf of users

 Object types (target types):
 FILE
 DIR
 FIFO
 SYMLINK
 DEV (devices by block/char and major:minor)
 IPC (Inter Process Communication)
 SCD (System Control Data)
 USER
 PROCESS
 NETDEV (new in 1.2.0: Network Devices)
 NETTEMP (new in 1.2.0: Network Object Templates)
 NETOBJ (new in 1.2.0: Network Objects (Sockets etc.))

 2.1 Architecture: Subjects, Objects and
Requests II

 Requests:
 Abstraction of what a subject wants to do with an object

 2.2 Architecture: List of Requests with
Targets

 R_ADD_TO_KERNEL: NONE

 R_ALTER: IPC

 R_APPEND_OPEN: FILE, FIFO, DEV, IPC

 R_CHANGE_GROUP: FILE, DIR, FIFO, IPC, USER, PROCESS, NONE

 R_CHANGE_OWNER: FILE, DIR, FIFO, IPC, PROCESS, NONE

 R_CHDIR: DIR

 R_CLONE: PROCESS

 R_CLOSE: FILE, DIR, FIFO, DEV, IPC, NETOBJ

 R_CREATE: DIR (where), IPC, NETTEMP, NETOBJ

 R_DELETE: FILE, DIR, FIFO, IPC, NETTEMP

 R_EXECUTE: FILE

 R_GET_PERMISSIONS_DATA: FILE, DIR, FIFO, IPC, SCD

 R_GET_STATUS_DATA: FILE, DIR, FIFO, SYMLINK, IPC, SCD, NETDEV

 R_LINK_HARD: FILE, FIFO

 R_MODIFY_ACCESS_DATA: FILE, DIR, FIFO

 R_MODIFY_ATTRIBUTE: All target types

 R_MODIFY_PERMISSIONS_DATA: FILE, DIR, FIFO, IPC, SCD, NONE

 R_MODIFY_SYSTEM_DATA: SCD, NETDEV

 2.2 Architecture: List of Requests with
Targets II

 R_MOUNT: DIR, DEV

 R_READ: DIR, SYMLINK, IPC, NETTEMP (optional: FILE, FIFO, DEV, NETOBJ)

 R_READ_ATTRIBUTE: All target types

 R_READ_OPEN: FILE, FIFO, DEV, IPC

 R_READ_WRITE_OPEN: FILE, FIFO, DEV, IPC

 R_REMOVE_FROM_KERNEL: NONE

 R_RENAME: FILE, DIR, FIFO

 R_SEARCH: DIR, FIFO

 R_SEND_SIGNAL: PROCESS

 R_SHUTDOWN: NETOBJ, NONE

 R_SWITCH_LOG: NONE

 R_SWITCH_MODULE: NONE

 R_TERMINATE: PROCESS (notify only)

 R_TRACE: PROCESS

 R_TRUNCATE: FILE

 R_UMOUNT: DIR, DEV, NONE

 R_WRITE: DIR, SCD, NETTEMP (optional: FILE, FIFO, DEV, NETOBJ)

 R_WRITE_OPEN: FILE, FIFO, DEV, IPC

 2.2 Architecture: List of Requests with
Targets III

 (New in 1.2.0)

 R_MAP_EXEC: FILE, NONE

 R_BIND: NETOBJ

 R_CONNECT: NETOBJ

 R_LISTEN: NETOBJ

 R_ACCEPT: NETOBJ

 R_SEND: NETOBJ

 R_RECEIVE: NETOBJ

 2.3 Architectural Diagram

 2.4 Module Registration (REG)

 Runtime registration of decision functions (Rule Sets)

and system calls

 Model implementation e.g. as kernel module

 Add or remove models, syscalls or generic (persistent)

lists in a running system

 Easy control of module removal by the module itself

 Sample modules provided

 3 Implemented Models

 3.1 MAC, FC and SIM
 3.2 PM, MS and FF
 3.3 AUTH
 3.4 RC
 3.5 ACL
 3.6 CAP

 3.1 Models: MAC, FC and SIM

 Mandatory Access Control (MAC):
 Bell-LaPadula
 253 security levels
 64 categories
 Automatic adjustment of current_sec_level and current_categories via

mac_auto with boundaries

 Functional Control (FC):
 Simple role model
 User, Security Officer, System Administrator
 Object Categories: General, Security, System

 Security Information Modification (SIM)
 Even simpler role model
 User and Security Officer
 Object Types: None, Security Information

 3.2 Models: PM, MS and FF

 Privacy Model by Simone Fischer-Hübner (PM):
 Complex model conforming to EU privacy laws
 Object Classes, Purposes, Tasks, Necessary Accesses, ...

 Malware Scan (MS):
 On-Access Malware Scanner
 File and socket accesses
 Scan status: unscanned, rejected, accepted-with-level
 Prototype - only few viruses detected
 Plug-In interface for better scanning engines

 File Flags (FF):
 Inheritable FILE, DIR, FIFO and SYMLINK attributes
 e.g. read-only, no-execute, secure-delete

 3.3 Models: AUTH

 Authentication (AUTH):
 Restriction of CHANGE_OWNER with target PROCESS (setuid)
 CHANGE_OWNER capabilities (inherited from file to process)
 auth_may_setuid and auth_may_set_cap
 Daemon based authentication enforcable

 3.4 Models: RC

 Role Compatibility (RC):
 Unlimited roles and types, types grouped per target type (file, dir, fifo,

symlink together)

 Compatibility of roles
 with object types
 with other roles (change role)
 in request granularity

 Forced and Initial Roles based on program files

 Separation of Administration Duties
 Separate sets of roles
 Admin Roles
 Assign Roles
 Additional access rights: Admin, Assign, Access Control, Supervisor

 3.5 Models: ACL

 Access Control Lists (ACL)
 What subject may access which object with which requests
 Subjects:
 RC roles (!)
 Users
 ACL Groups

 ACL Groups:
 All users can have individual groups
 Private and global groups

 Inheritance with masks (similar to Netware 3.xx)
 Default ACLs on top of hierarchy
 Special Rights:
 Access Control
 Forward
 Supervisor

 3.6 Models: CAP

 Linux Capabilities:
 Minimum and maximum capability sets for users and programs
 Applied at CHANGE_OWNER on processes (setuid) and EXECUTE

 Precedence of Minimum over Maximum Sets
 Precedence of Program over User Sets

 Limit rights of root programs or extend rights of normal user programs
 E.g. run sendmail from normal user account with DAC_OVERRIDE

and NET_BIND_SERVICE

 4 Practical Experience

 4.1 Running Systems

 4.2 Stability

 4.3 Performance

 4.1 Practical Experience: Running
Systems

 Compuniverse Firewall Servers
 Since 2000 with RSBAC (optional in the beginning)
 Strict encapsulation with full usability is possible
 Use of AUTH, FF and RC models
 Software selection for better RSBAC control, e.g. POP3 with separate

authentication program

 Many systems by other admins (see RSBAC mailing list)

 Linux distributions ALTLinux Castle and Kaladix

 4.2 Practical Experience: Stability

 UP: Very high stability
 no crash yet on my and customer production systems
 no crashes for 1.1.2 reported
 1.2.0 just released

 SMP: High stability
 only few problems reported
 no outstanding problems for 1.2.0 from pre series

 4.3 Practical Experience: Performance

 Performance influences
 Number and dynamic change of attribute objects
 Number and type of decision modules
 Logging

 Benchmarks
 Celeron 333 system, 2.4.18 kernel, RSBAC 1.2.0-pre6
 Three compile runs of same Linux kernel source each
 Runtime with framework only (Maint Mode): +0.51% (kernel +7.70%)
 Runtime with RC, AUTH, network control: +1.77% (kernel +25.22%)
 Runtime with REG, FF, RC, AUTH, ACL, CAP, network control (def.

config): +4.52% (kernel +88.37%)

 5 Online Ressources

 RSBAC Homepage: http://www.rsbac.org

 Mailing List
 Requests: rsbac-request@rsbac.org
 Mails: rsbac@rsbac.org
 Archive available (see contact page)

 6 New in 1.2.0

 User ID and RC role based symlink redirection support

 Network Device (NETDEV) targets (for configuration

and raw access)

 Real template based network access control
 Network Object (Socket) templates (NETTEMP) and targets

(NETOBJ)
 New requests BIND, CONNECT, etc.

 CAP module with min and max Linux Capabilities for

users and programs

 6 New in 1.2.0 II

 Network and firewall config protection as new SCD

targets

 Unlimited roles and types in RC model

 Separate request type MAP_EXEC for library mapping

(used to be EXECUTE, too)

 Lifetime limites for many RC and ACL settings, i.e.

access rights

Rule Set Based Access Control (RSBAC)

Linux Kernel Security Extension

Amon Ott <ao@rsbac.org>

Thank you!

