
RSBAC - a framework for enhanced Linux system security

Marek Jawurek∗

RWTH-Aachen

Abstract

Operating systems traditionally bring their own means
of protection against any kind of threats. But often the sys-
tem’s security is based on an evolved composition of differ-
ent projects and tools, historically grown with their operat-
ing system, ensuring and controlling system security. There-
fore only rarely a coherent security solution is provided by
the system. This existing structure of security suffers from
different problems and inconsistencies, caused by its evolu-
tion, and often lacks universality due to bad or shortsighted
design decisions in its history.

The RSBAC framework is focused on the elimination of
these drawbacks in Linux kernels and has been designed
this way from its start. It introduces a modular framework
to allow fine-grained access control enabling system admin-
istrators to compose a system using a combination of the
preferred security models. This paper presents the RSBAC
approach and outlines RSBAC’s concept of integration into
the Linux kernel. Furthermore, this work presents similar
solutions to kernel security and discusses the advantages
and disadvantages of RSBAC to those other solutions.

1 Introduction

When Linux was developed in the early 1990s it in-
herited the standard security mechanisms from Unix. The
built-in discretionary access control (DAC) for instance,
which does not separate ownership of filesystem objects
and the right to set permissions on these objects. Then the
Linux capabilities (CAPS) were added. Capabilities that
can be taken from or given to processes during execution.
Eventually, access control lists (ACL) were introduced into
the kernel. These features comprise the security features of
Linux. Although these facilities may suffice for the home
user, there are businesses and applications which need fine-
grained control of system resources. This is where Rule Set

∗This paper was written as part of the conference seminar ”dependable
distributed systems” which was organized by the laboratory of depend-
able distributed systems at RWTH Aachen University during winter term
2005/2006.

Based Access Control (RSBAC) comes into play. The RS-
BAC kernel-extension was developed in 1997 by Amon Ott
as his diploma work and is in stable production since 2000.
It introduces a security framework designed to install dif-
ferent security models dynamically into a Linux system in
order to control access to system resources.

1.1 This work’s focus

Four major different approaches to Linux security exist:
SELinux, grsecurity, LIDS and RSBAC. A direct compari-
son between these would be desirable but is due to the fol-
lowing reasons not feasible:

Classification The different approaches classify them-
selves differently (kernel patch, security framework,
etc.).

Interpretation Each improvement to Linux security has a
different understanding of a ’Secure Linux System’.

Concept Each approach can be conceptually different.

Combination Multiple approaches could be combinable in
one system.

Because of these four points, and there are probably
more, a direct comparison of SELinux, grsecurity, LIDS
and RSBAC is impractical. However, the following ques-
tions can be deduced from the problems mentioned above:

1. Is RSBAC a good security framework?

2. How ’much’ security can one achieve using RSBAC?

3. What is its main focus - does it aim at protection
against special attack vectors?

4. Is it easily combinable with other approaches?

This leads to the main goal of this work: This work fo-
cuses on the design and implementation of RSBAC and the
potential it has because of its superior concept. The ad-
vantages/disadvantages the RSBAC approach has over the
other existing approaches are discussed where appropriate.
Finally, this article examines the RSBAC framework with
respect to the questions posed above.



1.2 Structure

Firstly, this work presents the terminology needed for the
discussion of the RSBAC framework and other solutions.
Secondly it gives a short introduction to the structure and
functionality of RSBAC. Thirdly, other security enhance-
ments for Linux are introduced. Then, the RSBAC frame-
work is described in detail. Finally, in the last section, the
RSBAC system is assessed using the previously developed
questions and a conclusion about its usability is drawn.

1.3 Related Work

Linuxsecurity.com features a short introductory arti-
cle on RSBAC followed by an interview with Amon Ott
([8]). The table at [13] gives a good overview of RS-
BAC/grsecurity/SELinux but only lists main attributes. An
unpublished paper [16] deals with grsecurity and SELinux
and a quite vivid discussion on RSBAC vs grsecurity can be
found in the grsecurity Forums at [12].

1.4 Terminology

In order to discuss the benefits of RSBAC to the Linux
kernel one must understand the different aspects and terms
of security in computer systems.

Subject, Object: A subject in a computer system is either
a user or processes acting in the name of the user. The
subject’s sensitive work usually includes access to ob-
jects of the computer system, resources of different
kinds: files, pipes, network devices and others.

Security model: The security model is a formal de-
scription according to which system subjects
(users/processes) are granted/denied access to system
objects (files/devices). The security model usually
defines rules or criteria in order to map real-world
security measures to the computer system.

DAC- discretionary access control: In a DAC system the
owner of an object can grant permissions to other users
on that object. In contrast to this a MAC (mandatory
access control) separates the ownership of an object
and the rights to manipulate security related object at-
tributes.

RBAC - Role Based Access Control: This model assigns
a role to every user. The role can be a role mapped
from real-life to the security model. According to the
its role a user may or may not perform operations on
targets. RBAC can include hierarchies of roles with
inherited permissions.

ACL - Access Control Lists: ACL are extended access
attributes for files and directories beyond the
owner/group/other separation.

TPE - Trusted Path Execution: TPE restricts execution
of programs to paths that are considered ’trusted’, i.e.
if the parent directory is owned by root and neither
group, nor world-writable.

Pseudo-anonymity: The identity of a user is substituted
by an alias in order to hide the identity but keep the
possibility of logging the actions of this user.

Security policy: A security policy is a set of rules and con-
straints that control access of system subjects on sys-
tem objects. The security policy implements and ap-
plies the security model to a system.

RSBAC framework: In this work the term ’RSBAC
framework’ refers mostly to the framework part of the
RSBAC patches. The framework itself implements no
security policy whereas the modules available for RS-
BAC offer functionality and do implement a security
policy. Every module comes with an own default pol-
icy that is created upon first activation of the module
and can afterwards be manipulated.

2 Introduction to the RSBAC framework

2.1 Goals of the RSBAC framework

RSBAC’s main goal is the implementation of LaPadula’s
Generalized Framework for Access Control (GFAC) [14]
without sacrificing efficiency, stability and flexibility of the
Linux kernel. Additionally the following features are built-
in:

• activation and deactivation of security modules in run-
time.

• filesystem independent storage of security data.

• pseudo-anonymity for enhanced logging without the
sacrifice of privacy.

2.2 Structure of the RSBAC framework

The RSBAC framework is an implementation of the
GFAC which is divided into three separate facilities, the
Access Decision Facility (ADF) composed of the security
modules, the Access Enforcement Facility (AEF) and an
Access Control Information (ACI) part (figure 1).

Figure 1 illustrates an access request: Every time a sub-
ject attempts to access system objects in a security relevant
manner the AEF is invoked in the kernel. It then asks the

H-2



Figure 1. Structure of the RSBAC framework
and decision-making process

ADF for clearance. The ADF decides whether access is
granted or denied on the basis of the following data:

• The object, subject and the request of the system ac-
cess in question.

• Security data stored in the system for those entities
(ACI).

• The security modules activated at this time.

The answer to this request is returned to and enforced by
the AEF. After a successful access the ADF is informed by
the AEF in order to eventually update security data.

The separation of ADF and AEF yields several benefits:

• Only the AEF must be implemented into the kernel
where security relevant syscalls appear. The ADF is
a separate part that communicates with the AEF but
does not interfere with the rest of the kernel.

• Only the AEF must be adapted to the machine’s archi-
tecture. The ADF is a system independent part of the
framework.

When an ADF gets a request for system resources, all active
security modules’ policies are checked for their assessment.
Answers of the security models comprise ’granted’,’not
granted’, ’don’t care’ and ’not defined’ and are combined
to calculate the final decision. Security modules can be
switched on/off by the Security Officer (see section 2.3)
during runtime.

2.3 Separation of Duties

A feature of the Functional Control Model (LaPadula) ,
the separation of a system administrator and a security of-
ficer, is directly implemented into the RSBAC framework.
Initially a general security officer, a user with a special UID,
is introduced with the rights to control the framework and
its modules. But furthermore, each module can decide on its
own and change who the security officer for it is and what
his rights, regarding this module, are.

Due to this separation the root user of an RSBAC-
enhanced Linux system can be restricted to limited control
of the machine and the data stored within. This lowers the
abilities of the root user and therefore can also limit damage
in case of intrusion into a process running with root privi-
leges.

2.4 Security module data storage

Security models usually need to store data on sub-
jects/objects or requests. Different approaches are available
to store this data exist:

• It could be loaded into the system by the system ad-
ministrator after the boot process but this leaves the
system unprotected up to this moment.

• Storing the data on a separate partition would be pos-
sible, but the partition holding the information must
be connectable to the partition whose objects are de-
scribed by the information.

• The data could as well be stored in a special place des-
ignated by the filesystem driver in the same partition.
This approach, however, would demand changes to the
filesystem drivers that are used on the RSBAC system.

In order to circumvent these problems the security mod-
ules’ data is stored in a special directory ’rsbac.dat’ on every
mounted filesystem. This way it survives a reboot of the ma-
chine and the storage is filesystem independent. Access to
these directories is restricted to the kernel and the security
modules themselves. However, in case the system is booted
with another not RSBAC-secured kernel, these directories
are exposed and data stored within is accessible by usual
means.

2.5 Available security modules for RSBAC

At the moment there are several security modules avail-
able that implement security models: RC (Role Compatibil-
ity), ACL, MAC, CAP (Linux capabilities), JAIL (alterna-
tive to chroot), RES (Linux resources limitation), FF (File
Flags) and PM(Simone Fischer-Hübner’s Privacy Model).
Additionally there is a PaX support module and a Dazuko
File Access Control [4] module that allows plugging-in a
compatible virus scanner for on-access virus-scanning.

3 Other security enhancements for the Linux
kernel

Since the end of the 90s several other security enhance-
ments have been developed for the Linux kernel. These are
the still active projects:

H-3



• SELinux developed by the National Security Associa-
tion (NSA),

• grsecurity

• and LIDS both from the open source community.

The following subsections give a short introduction to
the three competitors of RSBAC and to PaX, a security
patch aimed at preventing buffer overflows and similar at-
tacks.

3.1 SELinux

SELinux is probably the most famous extension to Linux
security due to its origins, the National Security Associa-
tion. For some its origins are reason enough not to use it.
For others this fact supports the idea that it is ’really’ secure
because it is probably used by the NSA itself. However,
question 22 from the SELinux FAQ points out:

’Does NSA have plans to use it internally?’

’For obvious reasons, NSA does not comment on
operational uses.’

The first release was made public in Dec 22, 2000 and
released under the GPL. Since then it has been updated reg-
ularly several times a year. SELinux is an implementation
of the FLASK [19] architecture which evolved in coopera-
tion with the University of Utah from older system imple-
mentations made by the NSA and the Security Computing
Cooperation. SELinux offers the enforcement of Manda-
tory Access Controls (MAC), Role Based Access Control
(RBAC) and Type Enforcement (TE) [15]. Type Enforce-
ment assigns domain attributes to subjects on one side and
types to objects on the other side. A lookup mechanism
determines whether a subject has the right to conduct its ac-
tion on a specified object. The Type Enforcement approach
separates functional parts of the system that do not need
interaction, i.e. even if a process is compromised the at-
tacker will only be able to access objects accessible by this
process. SELinux uses the Linux Security Module (LSM)
hooks in the kernel to implement its policy. For some time
there was uncertainty about a patent on the ’Type Enforce-
ment’ technology held by the Security Computing Cooper-
ation but it has expired now.

3.2 grsecurity

grsecurity is a combination of patches, firstly released
in 2001 and has been in development since then. The lat-
est version (2.1.6) was released on June 14 2005, for kernels
2.4.31/2.6.11.12. grsecurity’s approach is named ’detection,

prevention and containment’ and aims at the ’avoid, iden-
tify, fix’ mentality employed by system administrators, ac-
cording to grsecurity. Fixing software bug by bug is not an
attainable solution as one can never say when the software
is finally secure. Furthermore it is a ’rat race ’ (mentioned
in the presentation available on [18]) where programmers
have to fix bugs that others have already discovered and,
potentially, misused.

In order to give system administrators a head start the gr-
security solution involves auditing and logging of the sys-
tems processes to detect intrusion (detection).

Prevention is attained by: The PaX [10] mechanism pre-
vents buffer overflows which pose a major security threat.
An improved chroot functionality enables better process
separation than the original chroot. ’OpenBSD randomness
features’ introduce randomness into system behavior, i.e. IP
IDs or PIDs, to name a few.

grsecurity’s containment consists of RBAC/ACL and
Trusted Path Execution (TPE) among other means.

3.3 LIDS

The development of the Linux Intrusion Detection Sys-
tem [7] was started in October 1999 by Huagang Xie. Al-
though it is named an intrusion detection system it actu-
ally is much more than that. The kernel built-in port-scan-
detection facility of LIDS does detect scans and reports
them to logs or via mail, but LIDS does also include ACL
facilities for files/devices and Linux capabilities. The usual
procedure on a LIDS enhanced system is to boot with full
capabilities for the root user and processes until the sys-
tem is ’sealed’ by the root user. From then on only priorly
defined capabilities remain accessible for the root user and
processes. Additionally the LIDS approach allows reacti-
vating capabilities later on. Therefore a secure access to the
security system is available via a password secured ’LIDS
free session’. This additional level of system administra-
tion is comparable to the RSBAC security officer but any
user who knows the password can access the ’LIDS free
session’, thus becoming a ’security officer’ in LIDS.

3.4 PaX - Page Execution

Because PaX is integrated in grsecurity and combinable
with RSBAC and because it plays a vital role in securing a
system in both approaches, it is listed here as well. It pro-
vides a distinction between pages of memory that are exe-
cutable and others that are writable (data pages) in order to
fight the problem of buffer overflows. The PaX kernel ex-
tension was initially released in October 2000 but its main
developer is still unknown. Meanwhile, its development has
been ceased and passed over to Brad Spengler of grsecurity.
On machines without the NX (no execution) bit for memory

H-4



pages PaX ensures that data pages are never executed. Fur-
thermore, pages can only transition from code pages to data
pages in order to protect the system from on-the-fly gener-
ated code as often introduced by buffer overflows or similar
attacks. After a wipe of data pages, they can be used for
code again. Additionally PaX employs address space lay-
out randomization (ASLR) making it harder for attackers to
use return to libc attacks. But PaX poses problems for pro-
grams that create code in runtime, like Java for instance, and
prevents normal program behaviour. These unwanted side
effects can be circumvented by excepting an executable file
from PaX protection.

4 RSBAC in detail

As previously mentioned RSBAC is a framework that al-
lows to implement several different security policies and to
activate and deactivate them during runtime. Therefore the
success of the framework (w.r.t. acceptance and usage) also
depends on the ease of use for security module developers
(apart from its maintainability for system administrators).
This section deals with the details of which and how sub-
jects, objects and access methods are exported to the secu-
rity modules, and how security module data is handled and
stored.

4.1 Security hooks in the Linux kernel

In order for the framework to allow security policies to
be as fine-grained as possibly wanted by a programmer it
has to offer hooks in the kernel code in every imaginable
place that might be of interest to the module programmer,
i.e. that is security relevant. The number of embedded
hooks does decrease performance but this is a tradeoff an
administrator might be willing to accept. If, in contrast,
a certain security policy could not be implemented because
the necessary hooks are not in place the administrator would
more likely switch the security framework instead of tinker-
ing with the kernel code himself, possibly introducing bugs
or, even worse, security issues.

LSM, the Linux Security Modules kernel enhancement,
does export hooks for security modules to implement a se-
curity solution since kernel 2.4. The development of LSM
is a response to a presentation of SELinux at the 2.5 Linux
Kernel Summit [1].

LSM offers about 130 hooks to security modules. A se-
curity module can register functions with the hooks that are
called if program execution triggers a hook. However, LSM
does not allow multiple functions to be registered with one
hook. If one wants multiple modules in LSM the combina-
tion has to be handled by the ’main’ module. Brad Spen-
gler of grsecurity and Amon Ott, the developer of RSBAC
share a common opinion, they do not use and do not like

the LSM hooks. They claim that LSM hooks are not gen-
eral enough, that they only include access control and no
auditing possibilities, lessen default security due to openly
exposed hooks and according to Amon Ott the way LSM
stores security attributes (additional fields in kernel structs)
endangers kernel stability. Both developers express doubts
about the motives that led to the introduction of LSM into
the kernel. The fact that LSM was introduced as an answer
to SELinux which was developed by the NSA, could lead to
several interesting conspiracy theories. Further information
on their arguments can be found at [5] under ’LSM’ and at
[11] in the documentation under ’Why RSBAC does not use
LSM’.

RSBAC follows a different approach. All security rel-
evant syscalls (a listing is available at [6]) are intercepted
and the information about the syscall, the request type, is
passed along with the subject and the object information to
the decision function provided by every activated security
module:

Decision function: This is the interface for a security mod-
ule to implement its policy. Information on the request,
the access target, the access subject and attributes asso-
ciated with the target are passed along to the function.
Based on this information and the security policy to be
implemented by the module the decision is returned.
It is either ’granted’,’not granted’, ’don’t care’ or ’un-
defined’ (undefined is an exceptional error and is not
supposed to happen). A comprehensive list of targets
and request types available in RSBAC can be found at
[9].

Notification function: The notification function is called
by the AEF after a granted request has been completed.
Using this, a module can either log the access or update
its information. Especially if new objects have been
created, i.e. files, information related to these can be
manipulated or created accordingly.

Overwrite decision function: Offers the module the pos-
sibility to order a secure delete (overwrite the file’s
contents). It is invoked whenever a file is about to be
deleted.

Mount/Unmount functions: Called when a filesystem is
mounted or unmounted. Since all security related
data is stored in the inaccessible RSBAC directories
on a per mounted filesystem basis, a security mod-
ule might want to update its information accordingly
if mount/unmount operations take place.

RSBAC administration functions: These functions are
used by the RSBAC daemon to order a security module
to write its security data to disk or to issue consistency
checks.

H-5



In addition to these functions a module can register its own
functions as syscalls. This way a security module can be
administrated from user space, so that the implemented se-
curity policy can be controlled by a security officer.

4.2 Data Storage and Memory Allocation

In order to pursue a sensible security policy, modules
have to store information about subjects/objects or policy
specific data. To help module developers overcome a steep
development curve, the RSBAC framework offers facilities
that do the job. Lists, and lists of sublists, are provided by
the RSBAC framework for security module data. By using
these lists the programmer does not have to care about mem-
ory allocation, the methods to manipulate these lists or store
them on disk, because all this is managed by the RSBAC
framework. Additionally, in contrast to the LSM approach,
dangerous pointer handling is concentrated in one point -
in the framework itself. As well as data handling, mem-
ory management can bind development time that could be
better spent on the security policy itself. Thus, the RSBAC
framework does also offer a few methods for memory man-
agement. More information on these facilities can be found
in the documentation at [11].

4.3 Combination of modules

Whenever the AEF asks the ADF for a decision about a
request all active modules at that moment are queried. Their
answers are then combined with the symmetrical operator
defined by figure 2.

operand 1 operand 2 result
granted granted granted
granted don’t care granted
not granted granted not granted
not granted don’t care not granted
undefined * undefined

Figure 2. Security module decision function
combination

This approach offers much flexibility when combining
security modules but does also require a good understand-
ing of the security models implemented by all modules.
Models can overlap in their capability of expression or even
contradict themselves. One can switch modules off at run-
time (as a security officer only) or switch a module to the
so-called ’Softmode’. Both features are available if com-
piled into the kernel. In ’Softmode’ the security officer can
debug the security models’ answers one at a time and elim-
inate problems, because decisions are made and logged but
not enforced.

The next subsections explain the ’Auth’ and the ’User-
management’ module to give the reader an insight into func-
tionality available for the RSBAC framework.

4.4 Auth Module

The Auth module restricts the UID a process may ac-
quire using ’setuid’. A process may be given a list of UIDs
it can change to or the general permission to change to any
ID. The list of available UIDs is called the ’capability set’
(not the same as Linux capabilities) and it is inherited from
the executable file of a process.

4.5 User-Management Module

This module replaces the usual way of administrating
user data in the system. Instead of the ’/etc/shadow’ file
which holds authentication information the module stores
and authenticates users. All programs that rely on PAM au-
thentication can be used with the User-Management module
by default. The module is simply installed as a PAM au-
thentication method. If user-management is subject to the
system’s security policy, i.e. if it is not controlled by other
means (Kerberos, LDAP), then this module is a natural con-
sequence of RSBAC usage on a system.

5 Assessment of the RSBAC framework

Up to now, the reader gained an insight into the RSBAC
framework and its potential. So in this section I try to an-
swer the questions posed in section 1.1 and make an assess-
ment of the RSBAC framework.

5.1 Is RSBAC a good framework for Linux secu-
rity?

Generally speaking one could say a framework is an en-
tity embedding something else. A framework does not pro-
vide any functionality by itself, instead it serves as a sur-
rounding entity providing support to its content. In the con-
text of a computer system the framework would be some
software embedding other software and providing support
in terms of interfaces. Assuming this interpretation is valid
one can assess RSBAC:

Firstly, although the RSBAC developers provide some
security modules with the framework they are not an es-
sential part of the framework. One could discard all prede-
fined modules and implement ones own modules. There-
fore, strictly speaking, RSBAC does not have to provide
functionality by itself. Secondly, RSBAC intercepts all se-
curity relevant syscalls and provides an interface that secu-
rity modules can use and which is well documented. This

H-6



empowers security module developers to implement a secu-
rity model quickly without having to mess with the kernel
itself. Thirdly, RSBAC provides certain functions which
ease the burden for the developer implementing his model.
Memory allocation and data storage in memory and repli-
cation to disk can be handled by the framework as well.

Summing it up, RSBAC is a good framework.

5.2 How secure can an RSBAC-secured system
be?

As in ’Behind every successful man is a strong woman’
one could say ’Behind every successful security solution
there is a good security expert’. The framework itself does
not provide any security to a system at all. The power of RS-
BAC reveals itself through the potential it has in the hands
of an expert. Because of the sheer complexity of RSBAC
one can create any security model imaginable with rela-
tively low effort. Multiple security modules can be com-
bined delivering a combined security policy to the system.
However, in the hands of a novice this complexity can be
difficult to understand.

The security of an RSBAC secured system could also be
limited by the framework itself. If the framework poses se-
curity risks itself it would render the security modules use-
less. Although, RSBAC has been rated stable by its devel-
opers in the year 2000 this does not allow any deductions
on the quality of its implementation. However, there exists
a product offered by Cyberguard [3] that officially uses RS-
BAC and received a EAL4 certification (common criteria
[2]). RSBAC itself has not been verified yet.

So in spite of its enormous potential and its commercial
use RSBAC’s approach to security is situated quite deeply
inside of the system. The idea is to limit the access of pro-
cesses and users to the system in order to prevent greater
damage in the event of intrusion and takeover of a process
context. One should evaluate the additional usage of secu-
rity mechanisms that protect the system more proactively
(Firewalls,Intrusion-Detection-Systems). LIDS for exam-
ple, integrates such mechanisms, it can detect port scans.

But there is a difference between being a complete secu-
rity solution and a security framework, and while the first
can be constricting, the latter can be too loose, there will
always be a tradeoff.

5.3 What does RSBAC offer against known attack
vectors?

RSBAC can only protect confidentiality and integrity of
a system. Availability is not ensured per se, but can be a
side effect of the separation of services on the system. As
mentioned in the previous subsection, RSBAC security is

positioned relatively deep inside the system. The advantage
of this approach:

• RSBAC is equally capable of defending the sys-
tem from external (network) attacks as from internal
(trusted users) attacks. If the security policy restricts
capabilities of local users and the usable system ser-
vices the likelihood of misuse is minimized.

• The motive behind an attack on a computer system
is either to gain access to the system or to stop its
work. RSBAC can not protect a system from denial-of-
service attacks or similar. But it can ensure that once
inside the system the attacker has only little to take
or to damage. If the security policy is tight enough,
so that processes have only access to data that they
need (e.g. FTP to user directories, Web-server to server
pages, DNS to domain information). One can rule out
that a compromise of this service will endanger other
data as well. And as all attack vectors aim at using a
processes context (social engineering as well as emails
with virus attachments or buffer overflows in network
services) one can, using RSBAC, divide the system
into small compartments in order to confine the po-
tential damage of all attack vectors.

5.4 Is RSBAC combinable with other security en-
hancements?

Generally speaking : ’Of course !’, but one has to differ-
entiate the means and the security policy implemented by
the means. Because RSBAC is such a general approach
one could implement the security policy of SELinux, in
this respect SELinux and RSBAC are combinable. Even
more interestingly, an SELinux module can be found on the
todo-list of the RSBAC website, with a helper script to load
SELinux configurations into this SELinux RSBAC module.
This would enable SELinux users to migrate easily to RS-
BAC if wanted or needed. Additionally the PaX patches can
be used together with the RSBAC framework, there even is
a module that allows to store PaX relevant information us-
ing RSBAC’s data storage facilities so that executables do
not have to be marked for PaX. Binaries can be updated
without losing the flags and security checkers do not pro-
duce false alarms when a flag on a binary is changed.

6 Conclusion

RSBAC is one of the oldest but probably the most far-
sighted approach to enhanced security in a Linux system.
It does not limit the user to a predefined security policy
but instead provides a good basis to start from and thus de-
livers high flexibility in implementing a custom, very fine-
grained security policy. The downside of this flexibility is,

H-7



of course, the need for expertise and experience from the
system administrator. The RSBAC framework does not pro-
vide a default policy like grsecurity and SELinux. However
the modules shipped with the framework do have default se-
curity policies that do provide some security upfront. Since
usually the framework will not be used on its own, with-
out the available modules, one could say RSBAC provides
a default policy. Nevertheless usage of RSBAC can only
be recommended to the experienced system administrator
who needs the flexibility and is willing to invest the time
needed to master RSBAC and the functionality provided by
its modules.

The fact that RSBAC is more universal and consistent
than other approaches does not necessarily mean it is better
than others, but it has the potential to be better. In the end,
it is the scenario, the available time frame, the administra-
tor’s personal opinion and the security policy chosen by the
administrator that predetermine the choice of an approach.

References

[1] Presentation of lsm at linux kernel summit, 2001.
http://lsm.immunix.org/docs/overview/
linuxsecuritymodule.html.

[2] Common criteria website, 2005.
http://www.commoncriteriaportal.org.

[3] Cyberguard website, 2005. http://www.cyberguard.com.
[4] Dazuko file access control interface, 2005.

http://www.dazuko.org/.
[5] Grsecurity website, 2005. http://www.grsecurity.net.
[6] Intercepted syscalls in rsbac,

2005. http://svn.rsbac.mprivacy-
update.de/viewsvn.php?project=rsbac1&path=/linux-
kernel/2.4/branches/linux-rsbac-
1.2/Documentation/rsbac/Interceptions-2.4.

[7] Lids project, 2005. http://www.lids.org.
[8] Linuxsecurity.com, 2005.

http://www.linuxsecurity.com/content/view/117460/49/.
[9] List of rsbac targets and request types, 2005.

http://rsbac.org/documentation/targets and requests.
[10] Pax website, 2005. http://pax.grsecurity.net.
[11] Rsbac website, 2005. http://www.rsbac.org.
[12] Rsbac/grsecurity discussion in grsecurity forum, 2005.

http://forums.grsecurity.net/viewtopic.php?p=3076&
sid=62bcd6cc0e7e18c6c2d42b6d742f2eb4.

[13] Rsbac/grsecurity/selinux comparison table, 2005.
http://gentoo-wiki.com/Access Control Comparison Table.

[14] M. Abrams, K. Eggers, L. L. Padula, and I. Olson. A gen-
eralized framework for access control: An informal descrip-
tion. October 1990.

[15] L. Badger, D. Sterne, D. Sherman, K. Walker, and
S. Haighighat. Practical domain and type enforcement for
unix. pages 66–77, May 1995.

[16] M. Fox, J. Giordano, L. Stotler, and A. Thomas. Selinux
and grsecurity: A case study comparing linux security kernel
enhancements. http://www.cs.virginia.edu/ jcg8f/
GrsecuritySELinuxCaseStudy.pdf.

[17] A. Ott. Regelsatz-basierte zugriffskontrolle nach dem ’gen-
eralized framework for access control’- ansatz am beispiel
linux. Master’s thesis, November 1997.

[18] B. Spengler. Detection, prevention, and containment: A
study of grsecurity. Libres Software Meeting, 2002.

[19] R. Sripada and T. F. Keefe. Version management in the star
mls database system. August 1998.

H-8


