
Rule Set Based Access Control (RSBAC)

Securing Linux from the Inside

Amon Ott <ao@rsbac.org>

 Contents:

 1 Introduction
 1.1 History
 1.2 Motivation

 2 Overview of RSBAC

 3 Architecture and Implementation of the Framework
 3.1 Subjects and Objects
 3.2 List of Requests with Targets
 3.3 Architectural Diagram
 3.4 Module Registration (REG)
 3.5 Network Templates

 Contents II:

 4 Selection of Implemented Models
 4.1 Authentication Enforcement (AUTH)
 4.2 Role Compatibility (RC)
 4.3 Access Control Lists (ACL)
 4.4 File Flags (FF)
 4.5 Linux Capabilities (CAP)
 4.6 Process Jails (JAIL)
 4.7 Resource Control (RES)
 4.8 Pageexec Support (PAX)

 Contents III:

 5 Installation
 5.1 Linux Kernel
 5.2 Administration tools
 5.3 First Boot

 6 Administration
 6.1 Command Line Tools
 6.2 Menues

 7 Usage Areas
 7.1 Workstations
 7.2 Servers

 Contents IV:

 8 Practical Experience
 8.1 Running Systems
 8.2 Stability
 8.3 Performance

 9 Online Ressources

 10 Outlook

 1 Introduction

 1.1 History
 1.2 Motivation
 1.3 Design Goals

 1.1 Introduction: History

 RSBAC Project started as Master Thesis in November 1996

 First public RSBAC version 0.9 for Linux kernel 2.0.30 on January, 9, 1998

 Current stable release 1.2.3 for kernels 2.4.26-27 and 2.6.6-8

 1.2.4 with many changes (see Outlook)

 1.2 Introduction: Motivation

 Classic Linux/Unix Access Control is insecure
 Small Granularity

 Discrete Control
 Trusted user?
 Malware: Invitation to Trojans and Viruses

 Superuser root
 Full Access
 Too often needed
 Too many exploits (root kits, kernel module attacks etc.)

 Better models for other administration goals
 Flexible Model selection and combination

 Good portability.

 2 Overview of RSBAC

 Free Open Source (GPL) Linux kernel security extension

 Independent of governments and big companies

 Several well-known and new security models, e.g. MAC, ACL and RC

 Control over individual user and program network accesses

 Any combination of models possible

 Easily extensible: write your own model for runtime registration.

 2 Overview of RSBAC II

 Support for current 2.4 and 2.6 kernels

 Stable for production use since March 2000

 Several publications (see Homepage)

 Linux distributions with RSBAC: Adamantix and Gentoo Hardened

 Debian kernel patch package, Sniffix Live CD System, Simple Live-CD

 Outdated Linux distributions with RSBAC: ALTLinux Castle and Kaladix.

 2 Overview of RSBAC III

 Access Control Framework for current Linux Kernels

 Based on Generalized Framework for Access Control (GFAC) by Abrams
and LaPadula

 Flexible structure
 Separation between enforcement (AEF), decision (ADF) and access

control information (ACI)
 Only AEF and part of ACI system dependent
 Almost any type of model supportable
 Model independent -> meta policy
 Runtime Module Registration (REG)

 2 Overview of RSBAC IV

 Powerful logging system
 Request and decision based
 User based
 Program based
 Object based.

 3 Architecture and Implementation of the
Framework

 3.1 Subjects and Objects
 3.2 List of Requests with Targets
 3.3 Architectural Diagram
 3.4 Module Registration (REG)
 3.5 Network Templates

 3.1 Architecture: Subjects and Objects

 Subjects:
 Processes acting on behalf of users,
 executing one program file with a set of dynamic libraries

 Object Types (Target Types):
 FILE
 DIR
 FIFO
 SYMLINK
 DEV (devices by block/char and major:minor)
 IPC (Inter Process Communication)
 SCD (System Control Data)
 USER
 PROCESS
 NETDEV
 NETTEMP
 NETOBJ

 3.2 Architecture: List of Requests

 Requests:
 Abstraction of what a subject wants to do with an object

 46 Request Types:

 R_ADD_TO_KERNEL: NONE
 R_ALTER: IPC
 R_APPEND_OPEN: FILE, FIFO, DEV, IPC
 R_CHANGE_GROUP: FILE, DIR, FIFO, SYMLINK, IPC, PROCESS, NONE
 R_CHANGE_OWNER: FILE, DIR, FIFO, SYMLINK, IPC, PROCESS, NONE
 R_CHANGE_DAC_EFF_OWNER: PROCESS
 R_CHANGE_DAC_FS_OWNER: PROCESS
 R_CHDIR: DIR
 R_CLONE: PROCESS
 R_CLOSE: FILE, DIR, FIFO, DEV, IPC, NETOBJ

 3.2 Architecture: List of Requests II

 R_CREATE: DIR (where), IPC, NETTEMP, NETOBJ
 R_DELETE: FILE, DIR, FIFO, SYMLINK, IPC, NETTEMP, NETOBJ
 R_EXECUTE: FILE
 R_GET_PERMISSIONS_DATA: FILE, DIR, FIFO, SYMLINK, IPC, SCD
 R_GET_STATUS_DATA: FILE, DIR, FIFO, SYMLINK, IPC, SCD,
PROCESS, NETDEV

 R_LINK_HARD: FILE, FIFO, SYMLINK
 R_MODIFY_ACCESS_DATA: FILE, DIR, FIFO, SYMLINK
 R_MODIFY_ATTRIBUTE: All target types
 R_MODIFY_PERMISSIONS_DATA: FILE, DIR, FIFO, SYMLINK, IPC, SCD,
NONE

 R_MODIFY_SYSTEM_DATA: SCD, PROCESS, NETDEV
 R_MOUNT: FILE, DIR, DEV
 R_READ: FILE, DIR, FIFO, DEV, IPC, NETTEMP, NETOBJ
 R_READ_ATTRIBUTE: All target types
 R_READ_OPEN: FILE, FIFO, DEV, IPC

 3.2 Architecture: List of Requests III

 R_READ_WRITE_OPEN: FILE, FIFO, DEV, IPC
 R_REMOVE_FROM_KERNEL: NONE
 R_RENAME: FILE, DIR, FIFO, SYMLINK
 R_SEARCH: DIR, SYMLINK
 R_SEND_SIGNAL: PROCESS
 R_SHUTDOWN: NONE
 R_SWITCH_LOG: NONE
 R_SWITCH_MODULE: NONE
 R_TERMINATE: PROCESS (notify only)
 R_TRACE: PROCESS
 R_TRUNCATE: FILE
 R_UMOUNT: FILE, DIR, DEV
 R_WRITE: FILE, DIR, FIFO, DEV, SCD, NETTEMP, NETOBJ
 R_WRITE_OPEN: FILE, FIFO, DEV, IPC
 R_MAP_EXEC: FILE, NONE

 3.2 Architecture: List of Requests IV

 R_BIND: NETDEV, NETOBJ
 R_CONNECT: NETOBJ
 R_LISTEN: NETOBJ
 R_ACCEPT: NETOBJ
 R_SEND: NETOBJ
 R_RECEIVE: NETOBJ

 3.3 Architectural Diagram

Subject

Object

AEF

Data Structures

(1)
requests

access

(3) requests decision, (9) notifies

(5) replies 'granted' oder 'not granted'
(12) acknowledges

(4,10)
refer to

Data Structures

(11) update
(2) gets
system values

(6) if 'not granted': returns error (end here)
(8) if access failed: returns error (end here)
(13) returns control and data

ADF
RC rules

AUTH rules

ACL rules

System Values

System Kernel

(7) performs
access

System Call

 3.4 Module Registration (REG)

 Runtime registration of decision functions (Rule Sets) and system calls

 Model implementation e.g. as kernel module

 Add or remove models, syscalls or generic (persistent) lists in a running
system

 Easy control of module removal by the module itself

 Sample modules provided.

 3.5 Network Templates

 Description of network endpoints
 Ordering Number
 Name (for human use only)
 Address family (UNIX, INET, IPX, ...)
 Address (E.g. 192.168.10.0 or "/dev/log")
 Valid length (e.g. 24 Bits or 8 Byte)
 Type (ANY, STREAM, DGRAM, ...)
 Protocol (ICMP, TCP, UDP, ...)
 Local network device (E.g. eth0)
 Min and max port (E.g 1024-65535)

 Attribute values attached to templates
 Persistent default values for NETOBJ attributes

 Matched from lowest to highest template ordering number
 Used for local and remote endpoint, depending on request type.

 3.5 Network Templates II: Examples

 Only apache may bind to port 80 at eth0

 Proxy may only connect to external addresses, not LAN
 Proxy may only accept connections from internal addresses

 Local users may only connect to mail and proxy server
 Local users (including root) may only use network families UNIX and INET.

 4 Selection of Implemented Models

 4.1 Authentication Enforcement (AUTH)
 4.2 Role Compatibility (RC)
 4.3 Access Control Lists (ACL)
 4.4 File Flags (FF)
 4.5 Linux Capabilities (CAP)
 4.6 Process Jails (JAIL)
 4.7 Resource Control (RES)
 4.8 Pageexec Support (PAX)

 4.1 Models: Authentication (AUTH)

 Restriction of CHANGE_OWNER with target PROCESS
(setuid)

 CHANGE_OWNER capabilities (inherited from file to process): sets of
reachable user IDs

 auth_may_setuid and auth_may_set_cap

 Daemon based authentication enforcable:
 Process authenticates against daemon
 Daemon sets capability for auth’d user at process
 Process calls setuid.

 4.1 Models: AUTH II

 Limited lifetime of all AUTH capabilities

 New in 1.2.2: Capabilities for effective and fs uids

 New in 1.2.3: AUTH learning mode.

 4.2 Models: Role Compatibility (RC)

 Role and type based model:
 User default role
 Process current role
 Object type

 Compatibility of roles
 with object types (access rights in RSBAC framework granularity)
 with other roles (change role actively)

 Forced and Initial Roles for program files.

 4.2 Models: Role Compatibility (RC) II

 Separation of Administration Duties
 Admin Roles
 Assign Roles
 Additional access rights: Admin, Assign, Access Control, Supervisor

 Lifetime limits for all compatibility settings.

 4.3 Models: Access Control Lists (ACL)

 What subject may access which object with which requests

 Subjects:
 RC roles (!)
 Users
 ACL Groups

 ACL Groups of users:
 All users can have individual groups
 Private and global groups

 Inheritance with masks (similar to Netware 3.xx)

 Default ACLs on top of hierarchy.

 4.3 Models: Access Control Lists II

 Special Rights for administration:
 Access Control
 Forward
 Supervisor

 Lifetime limits for all ACL entries and group memberships

 New in 1.2.3: ACL learning mode.

 4.4 Models: File Flags (FF)

 Inheritable FILE, DIR, FIFO and SYMLINK attributes

 Valid for all users

 e.g. read-only, no-execute, secure-delete, append-only.

 4.5 Models: Linux Capabilities (CAP)

 Minimum and maximum capability sets for users and programs
 Applied at CHANGE_OWNER on processes (setuid) and EXECUTE

 Precedence of Minimum over Maximum Sets
 Precedence of Program over User Sets

 Limit rights of root programs or extend rights of normal user programs
 E.g. limit mail server to never change network settings.

 4.6 Models: Process Jails (JAIL)

 Preconfigured process encapsulation

 Sealed chroot jails

 No contact to processes outside the jail

 Many further restictions, some optional

 Specially limits administration and network accesses.

 4.7 Models: Resource Control (RES)

 Minimum and maximum resource limits for users and programs

 Applied at CHANGE_OWNER on process (setuid) and EXECUTE

 Precedence of Minimum over Maximum Sets
 Precedence of Program over User Sets

 Only management of existing Linux process attributes
 Max. file size, number of processes, memory usage, etc.

 4.8 Models: Pageexec (PAX)

 Management of process attributes for PaX kernel security extension

 PaX protects from common attack types against buggy programs
 Special protection against inserted program code

 More info: pax.grsecurity.net.

 5 Installation under Linux

 5.1 Linux Kernel
 5.2 Administration tools
 5.3 First Boot

 5 Installation for Linux

 Linux Kernel (pre-patched)
 Extract kernel source tar archive
 Configure, touch Makefile, compile and install
 RSBAC normal and maint kernels / Soft Mode

 Linux Kernel (patch yourself)
 Extract RSBAC tar archive in kernel dir
 Patch kernel (with patch-x.y.z-va.b.c.gz)
 Apply bugfixes
 Configure, touch Makefile, compile and install
 RSBAC normal and maint kernels / Soft Mode

 Administration tools
 Extract tar archive
 ./configure && make && make install

 5 Installation for Linux II

 First Boot
 Kernel parameter rsbac_auth_enable_login
 Add user 400 (Security Officer etc.)
 Adjust AUTH capabilities for failed services or use AUTH learning mode.

 6 Administration

 6.1 Command Line Tools
 6.2 Menues

 6.1 Administration: Command Line

 General and Model specific (RC, AUTH, ACL)

 6.2 Administration: Menues

 7 Areas of use

 7.1 Workstations
 7.2 Server systems

 7.1 Areas of use: Workstations

 Protection against unwanted configuration changes

 Malware protection

 Reduced administration work.

 7.2 Areas of use: Server Systems

 Encapsulation of services
 Need-to-Know principle
 Malware protection

 Firewalls
 DNS, Proxies, etc.
 Advanced Protection of base system

 (Virtual) Webservers
 Apache, Zope etc.
 Separation of domains
 Protection of critical data
 Encapsulation of CGIs.

 7.2 Areas of use: Server Systems II

 (Virtual) mail servers
 sendmail, postfix, qmail, POP3, IMAP, Mailing Lists etc.
 Separation of mail areas

 File servers
 Samba, Coda, etc.
 Separation of organizational areas

 Application servers
 Separation between user accounts
 Protection against user attacks

 Other servers.

 8 Practical Experience

 8.1 Running Systems
 8.2 Stability
 8.3 Performance

 8.1 Experience: Running Systems

 Linux distributions Adamantix and Gentoo Hardened with RSBAC

 m-privacy TightGate-Pro
 Extensive use of RSBAC
 Application server system for secure Internet access
 Strong encapsulation of all network services and users
 Uses most of the models mentioned

 Many other stable production systems worldwide.

 8.2 Practical Experience: Stability

 More than four years of very high stability

 SMP systems more than three years of high stability

 Few people reported problems with v1.2.3 on 2.6 kernels

 8.3 Practical Experience: Performance

 Performance influences
 Number and dynamic change of attribute objects
 Number and type of decision modules
 Logging

 Benchmarks
 Celeron 333 system, 2.4.19 kernel, RSBAC 1.2.1
 Three Linux kernel compile runs each
 Runtime with framework only: +0.68% (Kernel +11.33%)
 Runtime with RC, AUTH, network, logging enabled: +2.30% (kernel

+43.02%)
 Runtime with REG, FF, RC, AUTH, ACL, CAP, network (def. config):

+4.21% (kernel +82.47%).

 9 Online Ressources

 RSBAC Homepage: http://www.rsbac.org

 Mailing List
 Requests: rsbac-request@rsbac.org
 Mails: rsbac@rsbac.org
 Archive available (see contact page)

 Adamantix
 http://www.adamantix.org

 Gentoo Hardened Subproject RSBAC
 http://hardened.gentoo.org/rsbac

 10 Outlook for 1.2.4

 Kernel space user management
 Full passwd/shadow compatible
 Fine grained access control by all modules
 Checking and account logic in kernel only
 PAM and NSS modules for easy usage
 Authentication enforcement: only setuid to authenticated uids
 => Finally taking user control away from ordinary programs

 AUTH daemon for more secure network authentication
 Alternative to kernel based user management

 Improved learning modes

 Many small changes (see online to-do list)

 ???

Rule Set Based Access Control (RSBAC)

Securing Linux from the Inside

Amon Ott <ao@rsbac.org>

Thank you!

